Esercizio 35 limiti in due variabili

Limiti in due variabili

Home » Esercizio 35 limiti in due variabili
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
post
page


 

Esercizio 35  (\bigstar\largewhitestar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esiste, il seguente limite

(1)   \begin{equation*} \lim_{(x,y)\to (0,0)} \;\dfrac{\ln\left(\cos\left(x^2+y^2\right)\right)}{x^2+y^2}. \end{equation*}

 

 

Svolgimento.  Sia

    \[f:\Omega=\{(x,y)\in\mathbb{R}^2:\,\cos\left(x^2+y^2\right)>0,\,(x,y)\neq (0,0) \}\rightarrow \mathbb{R}\]

tale che

    \[f(x,y)=\dfrac{\ln\left(\cos\left(x^2+y^2\right)\right)}{x^2+y^2}.\]

Si osserva che

    \[\begin{aligned} \ln\left(\cos\left(x^2+y^2\right)\right)&=\ln\left(1-\dfrac{1}{2}\left(x^2+y^2\right)^2+o\left(\left(x^2+y^2\right)^2\right)\right)=\\\\ &=-\dfrac{1}{2}\left(x^2+y^2\right)^2+o\left(\left(x^2+y^2\right)^2\right)\quad \text{per}\,\,(x,y)\rightarrow(0,0), \end{aligned}\]

dunque (1) diventa

    \[\begin{aligned} \lim_{(x,y)\to (0,0)} \;\dfrac{\ln\left(\cos\left(x^2+y^2\right)\right)}{x^2+y^2}=& \lim_{(x,y)\to (0,0)}\,\dfrac{-\dfrac{1}{2}\left(x^2+y^2\right)^2+o\left(\left(x^2+y^2\right)^2\right)}{x^2+y^2}=\\ \\ &= \lim_{(x,y)\to (0,0)} \;\left(-\dfrac{1}{2}\left(x^2+y^2\right)+o\left(\left(x^2+y^2\right)\right)\right)=0. \end{aligned}\]

Si conclude che

    \[\boxcolorato{analisi}{ \lim_{(x,y)\to (0,0)} \;\dfrac{\ln\left(\cos\left(x^2+y^2\right)\right)}{x^2+y^2}=0.}\]