Jacobiano associato al cambiamento di coordinate sferiche
Se in un integrale triplo il dominio di integrazione o la funzione integranda presentano simmetrie di tipo sferico, è naturale tentare di adattarne la forma assecondando tali simmetrie, nel tentativo di semplificare il calcolo. Matematicamente, ciò si traduce nel trasformare le coordinate cartesiane in quelle sferiche. Quando si esegue questa operazione, occorre tenere conto del fatto che le nuove coordinate determinano un nuovo elemento infinitesimo di volume ed è necessario esprimere il rapporto tra questo e l’elemento di volume precedente, attraverso il cosiddetto Jacobiano associato al cambiamento di coordinate.
In questo articolo ci occupiamo dello jacobiano associato al cambio di coordinate sferiche: dopo aver presentato la formula che lo descrive, la applichiamo in alcuni esempi pratici, che rendono evidenti le sue applicazioni agli integrali tripli della fisica e dell’ingegneria.
Oltre all’esaustiva lista reperibile alla fine dell’articolo, segnaliamo il seguente materiale su argomenti collegati:
- Integrali multipli — Parte 1 (teoria);
- Integrali multipli — Parte 2 (teoria ed esercizi misti);
- Regola della Catena — Teoria ed esempi;
- Laplaciano;
Buona lettura!
Autori e revisori
Leggi...
Richiamiamo il seguente teorema.
(1)
allora
dove indica la matrice Jacobiana della trasformazione (1).
In pratica, il teorema precedente viene applicato osservando che l’elemento di volume si trasforma secondo la legge
Introduciamo un sistema di coordinate sferiche come nella seguente figura.
dove è la distanza radiale, è l’angolo azimutale e è l’angolo polare.
Le coordinate cartesiane di un punto si ottengono dalle tre coordinate sferiche di quel punto con:
Lo Jacobiano della trasformazione lo indicheremo come e nel caso delle coordinate sferiche vale:
Dunque concludiamo che
ed in particolare
Di seguito qualche esempio.
Esempio 1 Sia , calcolare
Svolgimento.
è una sfera di raggio centrata nell’origine degli assi. Facciamo riferimento alla seguente figura
ed utilizziamo le coordinate sferiche
e
Dunque
Esempio 2 Sia
calcolare
Svolgimento.
L’insieme è la parte dello spazio compresa fra le sfere di equazione e e il semicono .
Vediamo la sezione dell’insieme con il piano (in rosso):
Passiamo in coordinate sferiche in cui la colatitudine è misurata rispetto all’asse . Poniamo quindi
e
Abbiamo che
Allora
dove
da cui otteniamo
ovvero
Fonte.
Ulteriori risorse didattiche sugli integrali doppi e tripli
Leggi...
Per ulteriori approfondimenti sugli integrali doppi, si raccomanda la visione dei seguenti video didattici a cura del Professor Valerio Pattaro, disponibili sul canale YouTube ufficiale Valerio Pattaro:
- Dominio rettangolare, esercizio 1
- Dominio rettangolare, esercizio 2
- Dominio normale all’asse x (detto anche dominio y-semplice), esercizio 1
- Dominio normale all’asse x (detto anche dominio y-semplice), esercizio 2
- Dominio normale all’asse y (detto anche dominio x-semplice), esercizio 1
- Integrazione tramite cambio di variabili da cartesiani a polari, esercizio 1
- Integrazione tramite cambio di variabili da cartesiani a ellittiche, esercizio 1
- Applicazioni degli integrali tripli
Tutta la teoria di analisi matematica
Leggi...
- Teoria Insiemi
- Il metodo della diagonale di Cantor
- Logica elementare
- Densità dei numeri razionali nei numeri reali
- Insiemi Numerici
- Il principio di induzione
- Gli assiomi di Peano
- L’insieme dei numeri reali: costruzione e applicazioni
- Concetti Fondamentali della Retta Reale: Sintesi Teorica
- Costruzioni alternative di
- Binomio di Newton
- Spazi metrici, un’introduzione
- Disuguaglianza di Bernoulli
- Disuguaglianza triangolare
- Teoria sulle funzioni
- Funzioni elementari: algebriche, esponenziali e logaritmiche
- Funzioni elementari: trigonometriche e iperboliche
- Funzioni goniometriche: la guida essenziale
- Teorema di Bolzano-Weierstrass per le successioni
- Criterio del rapporto per le successioni
- Definizione e proprietà del numero di Nepero
- Limite di una successione monotona
- Successioni di Cauchy
- Il teorema ponte
- Teoria sui limiti
- Simboli di Landau
- Funzioni continue – Teoria
- Il teorema di Weierstrass
- Il teorema dei valori intermedi
- Il teorema della permanenza del segno
- Il teorema di Heine-Cantor
- Il teorema di esistenza degli zeri
- Il metodo di bisezione
- Teorema ponte versione per le funzioni continue
- Discontinuità di funzioni monotone
- Continuità della funzione inversa
- Teorema delle contrazioni o Teorema di punto fisso di Banach-Caccioppoli
- Teoria sulle derivate
- Calcolo delle derivate: la guida pratica
- Teoria sulle funzioni convesse
- Il teorema di Darboux
- I teoremi di de l’Hôpital
- Teorema di Fermat
- Teoremi di Rolle e Lagrange
- Il teorema di Cauchy
- Espansione di Taylor: teoria, esempi e applicazioni pratiche
- Polinomi di Taylor nei limiti: istruzioni per l’uso
- Integrali definiti e indefiniti
- Teorema fondamentale del calcolo integrale (approfondimento)
- Integrali ricorsivi
- Formule del trapezio, rettangolo e Cavalieri-Simpson
- Teoria sugli integrali impropri
- Funzioni integrali – Teoria
- Introduzione ai numeri complessi – Volume 1 (per un corso di ingegneria — versione semplificata)
- Introduzione ai numeri complessi – Volume 1 (per un corso di matematica o fisica)
- Serie numeriche: la guida completa
- Successioni di funzioni – Teoria
- Teoremi sulle successioni di funzioni
- Serie di funzioni – Teoria
- Serie di potenze – Teoria
- Serie di Fourier – Teoria e applicazioni
- Integrali multipli — Parte 1 (teoria)
- Integrali multipli — Parte 2 (teoria e esercizi misti)
- Regola della Catena — Teoria ed esempi.
- Jacobiano associato al cambiamento di coordinate sferiche
- Guida ai Massimi e Minimi: Tecniche e Teoria nelle Funzioni Multivariabili
- Operatore di Laplace o Laplaciano
- Teoria equazioni differenziali
- Equazione di Eulero
- Teoria ed esercizi sulla funzione Gamma di Eulero
- Teoria ed esercizi sulla funzione Beta
- Approfondimento numeri complessi
- Diverse formulazioni dell’assioma di completezza
- Numeri di Delannoy centrali
- Esercizi avanzati analisi
Tutte le cartelle di Analisi Matematica
Leggi...
- Prerequisiti di Analisi
- Successioni
- Funzioni
- Funzioni continue-lipschitziane-holderiane
- Calcolo differenziale
- Derivate
- Calcolo delle derivate
- Retta tangente nel calcolo differenziale
- Punti di non derivabilità nel calcolo differenziale
- Esercizi sul teorema di Weierstrass con l’uso delle derivate
- Studio di funzione completo nel calcolo differenziale
- Esercizi teorici nel calcolo differenziale
- Metodo di bisezione
- Metodo di Newton
- Teoremi del calcolo differenziale
- Calcolo integrale
- Integrali impropri
- Espansione di Taylor
- Funzioni integrali (Approfondimento)
- Numeri Complessi
- Serie numeriche
- Successioni di funzioni
- Serie di funzioni
- Serie di potenze
- Serie di Fourier
- Trasformata di Fourier
- Funzioni di più variabili
- Teoria Funzioni di più variabili
- Massimi e minimi liberi e vincolati
- Limiti in due variabili
- Integrali doppi
- Integrali tripli
- Integrali di linea di prima specie
- Integrali di linea di seconda specie
- Forme differenziali e campi vettoriali
- Teorema di Gauss-Green
- Integrali di superficie
- Flusso di un campo vettoriale
- Teorema di Stokes
- Teorema della divergenza
- Campi solenoidali
- Teorema del Dini
- Equazioni differenziali lineari e non lineari
- Equazioni differenziali lineari
- Equazioni differenziali non lineari
- Analisi complessa
- Fondamenti
- Funzioni olomorfe
- Integrale di Cauchy e applicazioni
- Teorema della curva di Jordan e teorema fondamentale dell’Algebra
- Teorema di inversione di Lagrange
- Teorema dei Residui
- Funzioni meromorfe
- Prodotti infiniti e prodotti di Weierstrass
- Continuazione analitica e topologia
- Teoremi di rigidità di funzioni olomorfe
- Trasformata di Mellin
- Equazioni alle derivate parziali
- Funzioni speciali
- Analisi funzionale
- Complementi
- Funzioni Convesse
Tutti gli esercizi di geometria
In questa sezione vengono raccolti molti altri esercizi che coprono tutti gli argomenti di geometria proposti all’interno del sito con lo scopo di offrire al lettore la possibilità di approfondire e rinforzare le proprie competenze inerenti a tali argomenti.
Algebra lineare.
Geometria analitica.
Geometria differenziale.
Risorse didattiche aggiuntive per approfondire la matematica
Leggi...
- Math Stack Exchange – Parte della rete Stack Exchange, questo sito è un forum di domande e risposte specificamente dedicato alla matematica. È una delle piattaforme più popolari per discutere e risolvere problemi matematici di vario livello, dall’elementare all’avanzato.
- Art of Problem Solving (AoPS) – Questo sito è molto noto tra gli studenti di matematica di livello avanzato e i partecipanti a competizioni matematiche. Offre forum, corsi online, e risorse educative su una vasta gamma di argomenti.
- MathOverflow – Questo sito è destinato a matematici professionisti e ricercatori. È una piattaforma per domande di ricerca avanzata in matematica. È strettamente legato a Math Stack Exchange ma è orientato a un pubblico con una formazione più avanzata.
- PlanetMath – Una comunità collaborativa di matematici che crea e cura articoli enciclopedici e altre risorse di matematica. È simile a Wikipedia, ma focalizzata esclusivamente sulla matematica.
- Wolfram MathWorld – Una delle risorse online più complete per la matematica. Contiene migliaia di articoli su argomenti di matematica, creati e curati da esperti. Sebbene non sia un forum, è una risorsa eccellente per la teoria matematica.
- The Math Forum – Un sito storico che offre un’ampia gamma di risorse, inclusi forum di discussione, articoli e risorse educative. Sebbene alcune parti del sito siano state integrate con altri servizi, come NCTM, rimane una risorsa preziosa per la comunità educativa.
- Stack Overflow (sezione matematica) – Sebbene Stack Overflow sia principalmente noto per la programmazione, ci sono anche discussioni rilevanti di matematica applicata, specialmente nel contesto della scienza dei dati, statistica, e algoritmi.
- Reddit (r/Math) – Un subreddit popolare dove si possono trovare discussioni su una vasta gamma di argomenti matematici. È meno formale rispetto ai siti di domande e risposte come Math Stack Exchange, ma ha una comunità attiva e molte discussioni interessanti.
- Brilliant.org – Offre corsi interattivi e problemi di matematica e scienza. È particolarmente utile per chi vuole allenare le proprie capacità di problem solving in matematica.
- Khan Academy – Una risorsa educativa globale con lezioni video, esercizi interattivi e articoli su una vasta gamma di argomenti di matematica, dalla scuola elementare all’università.