Esercizi sul teorema di Weierstrass senza l’uso delle derivate 7

Esercizi sul teorema di Weierstrass senza l'uso delle derivate

Home » Esercizi sul teorema di Weierstrass senza l’uso delle derivate 7

In questa sezione sono richiamati brevemente i principali risultati teorici utilizzati nel corso della dispensa. Per le loro dimostrazioni e per ulteriori approfondimenti si rimanda alle dispense sulle funzioni continue.
 

Definzione 1 – Massimi e minimi assoluti.

Sia f \colon A \subset\mathbb{R} \to \mathbb{R} una funzione. M\in \mathbb{R} si dice \text{massimo} di f in A se esiste x_0\in A tale che

    \[f(x_0)= M \qquad \text{e} \qquad f(x)\le M \quad \forall x \in A.\]

In tal caso scriviamo M = \max_A f e x_0 si dice \textit{punto di massimo} per f.

Analogamente, m\in \mathbb{R} si dice \text{minimo} di f in A se esiste x_0\in A tale che

    \[f(x_0)= m \qquad \text{e} \qquad f(x)\ge m \quad \forall x \in A.\]

In tal caso scriviamo m=\min_A f e x_0 si dice \textit{punto di minimo} per f.

 
Un punto x_0 può non essere di massimo o di minimo assoluto per f, ma può esserlo se restringiamo f a un intorno di x_0. Ciò produce le seguenti definizioni.

Definizione 2 – Massimi e minimi locali.

Sia f\colon A\subseteq\mathbb{R}\to \mathbb{R} una funzione. x_0\in A si dice \textit{punto di massimo locale} per f se esiste \delta >0 tale che

    \[f(x) \le f(x_0) \qquad \forall x \in A \cap (x_0-\delta,x_0+\delta).\]

Analogamente, x_0\in A si dice \textit{punto di minimo locale} per f se esiste \delta >0 tale che

    \[f(x) \ge f(x_0) \qquad \forall x \in A \cap (x_0-\delta,x_0+\delta).\]

 

Teorema di Weierstrass. 

Siano a, b \in \mathbb{R}, con a \leq b e sia f\colon [a,b] \to \mathbb{R} una funzione continua. Allora f ammette massimo e minimo assoluti in [a,b], ovvero esistono x_m, \, x_M \in [a,b] tali che

    \[ f(x_m)\leq f(x) \leq f(x_M) \qquad \forall x \in [a,b] . \]

 
Il seguente risultato riassume i principali risultati sulla continuità delle funzioni elementari che vengono utilizzate negli esercizi.

Proposizione 1.

Valgono le seguenti proprietà:
\bullet Ogni funzione polinomiale P \colon \mathbb{R}\to \mathbb{R} è una funzione continua.
\bullet La funzione f\colon \mathbb{R} \to \mathbb{R} definita da f(x) = \sin x per x \in \mathbb{R} è continua.
\bullet La funzione f \colon \mathbb{R} \to \mathbb{R} definita da f(x) = \cos x per x \in \mathbb{R} è continua.
\bullet Sia a > 0 un numero reale. La funzione f\colon \mathbb{R} \to \mathbb{R} definita da f(x) = a^x per x \in \mathbb{R} è continua.
\bullet Sia a >0 un numero reale. La funzione f \colon (0,+\infty)\to \mathbb{R} definita da f(x) = \log_a (x) per x \in (0,+\infty) è continua.
\bullet Sia n \in \mathbb{N}. La funzione f\colon [0,+\infty]\to [0,+\infty], se n è pari, o la funzione f\colon \mathbb{R}\to \mathbb{R}, se n è dispari, definita da f(x)=\sqrt[n]{x} è continua.
\bullet La funzione f \colon[-1,1]\to \left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right] definita da f(x) = \arcsin x per x \in [-1,1] è continua.
\bullet La funzione f \colon[-1,1]\to \left[0,\pi\right] definita da f(x) = \arccos x per x \in [-1,1] è continua.
\bullet La funzione f \colon \mathbb{R} \to \left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right] definita da f(x)=\arctan x per x \in \mathbb{R} è continua.

 
Il seguente risultato riassume i risultati sulla continuità delle varie operazioni sulle funzioni continue.

Proposizione 2.

Sia A \subseteq \mathbb{R}, e siano f,g \colon A \to \mathbb{R} due funzioni continue. Allora
\bullet La somma f + g e il prodotto f\cdot g sono funzioni continue.
\bullet Il quoziente \frac{f}{g} è continuo nell’insieme A^* \coloneqq \{x \in A : g(x) \neq 0\}.
\bullet Siano f\colon A \to \mathbb{R} e g\colon B \to \mathbb{R} funzioni tali che f(A) \subseteq B. Se f è continua in x_0\in A e g è continua in y_0 \coloneqq f(x_0)\in B, allora la funzione composta g \circ f è continua in x_0.
\bullet Siano f,g \colon A \subseteq \mathbb{R} \to \mathbb{R} funzioni continue con f>0. Allora la funzione f^g è continua.

 

Testi degli esercizi

Esercizio 7  (\bigstar\bigstar\largewhitestar\largewhitestar\largewhitestar).

Siano f,g  \colon [a,b] \to \mathbb{R} funzioni continue tali che

    \[\max_{[a,b]}f = 3 \quad \text{ e } \quad \max_{[a,b]} g =-5.\]

Cosa si può dire del massimo della funzione f+g?

 
Svolgimento.
Si consideri la funzione f+g\colon [a,b]\to\mathbb{R} definita da

    \[(f+g)(x) = f(x) + g(x) , \quad \forall x \in [a,b].\]

Per la proposizione 2 la funzione f+g è continua, dunque soddisfa le ipotesi del teorema di Weierstrass in [a,b].
Per definizione di f+g si ha che

    \[\max_{x\in[a,b]} (f+g)(x) = \max_{x\in[a,b]} (f(x) + g(x) ) \leq \max_{x\in[a,b]}f(x) + \max_{x \in[a,b]}g(x) = 3- 5 = -2,\]

dove la disuguaglianza deriva dal fatto che

    \[f(x) \leq \max f \quad \text{e} \quad  g(x) \leq \max g \quad \forall  x \in [a,b],\]

da cui

    \[f(x) + g(x) \leq  \max f + \max g \quad \forall  x \in [a,b].\]

Si osservi che la disuguaglianza può essere anche stretta, infatti se [a,b]=[-1,1], f(x)=x e g(x)=-x si ha \max_{[-1,1]} f=1 e \max_{[-1,1]} g=1, ma \max_{[-1,1]}(f+g)=0 < 2.