Qui si risolve LOGO
a

Menu

M

Chiudi

Esercizi sulle disequazioni con i numeri complessi

Disequazioni con i numeri complessi

Home » Esercizi sulle disequazioni con i numeri complessi

Esplora il mondo intrigante delle disequazioni con i numeri complessi con il nostro dettagliato articolo “Esercizi misti sulle disequazioni con i numeri complessi”. Questo documento offre un’approfondita raccolta di esercizi, ciascuno accompagnato da soluzioni dettagliate, che ti guideranno attraverso le sfide matematiche delle disequazioni complesse. Perfetto per studenti e appassionati di matematica, questo PDF è un’opportunità unica per affinare le tue capacità analitiche e risolutive. Lasciati coinvolgere in un viaggio di scoperta e apprendimento, dove ogni esercizio è un passo verso una maggiore padronanza dei numeri complessi!

 
 

Autori e revisori

Mostra autori e revisori.

Autore: Valerio Brunetti

Revisore: Nicola Fusco.


 

Sommario

Leggi...

Il seguente lavoro presenta un insieme di esercizi mirati a esplorare le disequazioni nel contesto dei numeri complessi. Il documento include una varietà di problemi, che vanno dalle disequazioni lineari e quadratiche a quelle più complesse, con ogni sezione che offre esempi pratici e soluzioni dettagliate. Questo materiale è ideale per coloro che desiderano rafforzare le loro competenze nel risolvere disequazioni complesse, fornendo un approccio pratico e approfondito a questo importante argomento matematico.

 

Testi degli esercizi

Esercizio 1  (\bigstar\largewhitestar\largewhitestar\largewhitestar\largewhitestar). Risolvere la seguente disuguaglianza

    \[\mathfrak{Re} \left( (z-1)(z-2\imath)\right) \ge \mathfrak{Re}(z-1) \mathfrak{Re}(z-2\imath).\]

Suggerimento.

Usare la forma algebrica.

Svolgimento.

Sia z = a + \imath b. I due numeri complessi si scrivono come

    \[z-1 = (a-1) + \imath b \quad \text{e} \quad z - 2 \imath = a + (b-2)\imath,\]

da cui segue che la forma algebrica del prodotto è data da

    \[(z-1)(z-2\imath) = a(a-1) - b(b-2) + \imath \left((a-1)(b-2) + ab \right).\]

A questo punto la disuguaglianza si può scrivere in termini di a e b,

    \[a^2 - a - b^2 + 2b=a(a-1) - b(b-2) \ge (a-1)a = a^2 - a,\]

e portando tutto a sinistra si arriva a

    \[-b^2+2b \ge 0.\]

La soluzione di questa disequazione è 0 \le b \le 2 perciò, considerando che

    \[ 	b = \mathfrak{Im}(z), 	\]

la disequazione di partenza è soddisfatta dagli elementi dell’insieme

    \[ 	\{ z \in \mathbb C \: : |:\mathfrak{Im}(z) \in [0,2] \}. 	\]

Graficamente si può rappresentare come una striscia orizzontale di spessore uguale a due.

Esercizio 2  (\bigstar\largewhitestar\largewhitestar\largewhitestar\largewhitestar). Risolvere la seguente disuguaglianza

    \[|z-2\imath|^2 - 8 > |z|^2 - |z+2\imath|^2.\]

Suggerimento.

Usare la forma algebrica.

Svolgimento.

Sia z = a + \imath b. Il termine a sinistra è dato da

    \[|z-2\imath|^2 - 8 = a^2 + (b-2)^2 - 8 = a^2 + b^2 - 4b -4,\]

mentre quello a destra

    \[|z|^2 - |z+2\imath|^2 = a^2+b^2 - a^2 - (b+2)^2 = -4b - 4.\]

La disuguaglianza si può pertanto riscrivere come

    \[a^2+b^2-4b-4 > -4b-4,\]

e, portando tutti i termini a sinistra, si ottiene:

    \[a^2+b^2 > 0.\]

Questa è ovviamente verificata per ogni a,b \in \mathbb{R} con (a,b) \neq (0,0), che corrisponde a z \in \mathbb{C} \setminus \{0\}.

Esercizio 3  (\bigstar\bigstar\largewhitestar\largewhitestar\largewhitestar). Determinare l’estremo superiore e inferiore dell’insieme

    \[A = \left\{ |z-w| \: : \: |z-2| \le 1, \, \mathfrak{Re}(w-\imath \bar{w})=0 \right\}.\]

Suggerimento.

Identificare sul piano complesso le due figure geometriche date dalle condizioni per trovare z e w.

Svolgimento.

Innanzitutto osserviamo che

    \[0=\mathfrak{Re}(w-\imath\bar w) = \mathfrak{Re}(w) + \imath^2 \mathfrak{Im}(\bar w) = \mathfrak{Re}(w) - \mathfrak{Im}(w),\]

per cui w si può scrivere in forma algebrica come w = a(1+\imath), ovvero

    \[w \in \left\{ (a,b) \in \mathbb{R}^2 \: : \: a = b \right\},\]

che è esattamente la retta di coefficiente angolare uno e passante per l’origine nel piano complesso. Analogamente, la condizione

    \[|z-2| \le 1\]

ci dice che z appartiene alla palla di centro (2,0) e raggio uno nel piano complesso, quindi da un punto di vista geometrico la quantità

    \[|z-w|\]

che dobbiamo calcolare altro non è che la distanza tra due punti, uno sulla circonferenza e uno sulla retta in esame.

 

  1. L’estremo superiore dell’insieme è + \infty dato che la retta è illimitata. Infatti, dati

        \[z = 2 + 0 \imath \quad \text{e} \quad w_a := a(1+\imath),\]

    allora si ha

        \[|z-w_a|^2 = (a-2)^2 + a^2 = 2a^2 + 4 - 4a.\]

    Se prendiamo il limite per a \to +\infty, si ottiene esattamente +\infty.

  2.  

  3. Per trovare l’estremo inferiore, prendiamo un punto della retta e uno sul bordo della circonferenza, ovvero

        \[z = a + \imath \sqrt{1-(a-2)^2} \quad \text{e} \quad w = c(1+\imath).\]

    La distanza tra i due è data da

        \[|z-w|^2 = (a-c)^2 + (\sqrt{1-(a-2)^2} - c)^2\]

    ed è dunque sufficiente minimizzare rispetto ad a e c, con a\in (0,4) e c qualsiasi.

    Un approccio alternativo è il seguente. Consideriamo la famiglia di rette perpendicolari alla bisettrice del primo e terzo settore, ovvero

        \[b = - a + \kappa, \quad \kappa \in \mathbb{R},\]

    e scegliamo \kappa tale che questa passi per il centro della circonferenza:

        \[b = - a +2.\]

    Questa interseca la retta b = a nel punto w_0=1+\imath e la circonferenza nei punti che sono soluzione del sistema

        \[\begin{cases}b = - a + 2, \\ (a-2)^2+b^2=1. \end{cases}\]

    È facile vedere che le due soluzioni sono

        \[z_1 = 2 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\imath \quad \text{e} \quad z_2 = 2 + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\imath,\]

    ma a noi interessa solo z_1 perché siamo interessati alla distanza minima tra circonferenza e retta. Si ha

        \[|z_1-w_0|^2 = \left(2 - \frac{1}{\sqrt{2}}-1\right)^2 + \left(\frac{1}{\sqrt{2}}-1\right)^2 = 3 - 2 \sqrt{2},\]

    da cui segue che

        \[\inf A = \min A = \sqrt{3-2\sqrt{2}}.\]

Esercizio 4  (\bigstar\largewhitestar\largewhitestar\largewhitestar\largewhitestar). Determinare l’estremo superiore e inferiore dell’insieme

    \[B = \left\{ |z-w| \: : \: |z+2-3\imath| \le 3, \, |w-4-4\imath|\le 4 \right\}.\]

Suggerimento.

Identificare \mathbb C con \mathbb{R}^2 ed osservare che z e w variano all’interno di due dischi per calcolare \sup ed \inf.

Svolgimento.

Identificando \mathbb{C} con \mathbb{R}^2 tramite la solita corrispondenza

    \[\mathbb{C}\ni z = a+ \imath b \mapsto (a,b) \in \mathbb{R}^2,\]

trovare l’estremo inferiore/superiore di B equivale a minimizzare/massimizzare la funzione distanza tra due circonferenze in \mathbb{R}^2, più precisamente

    \[\mathcal{C}_1 : (a+2)^2+(b-3)^2 \le 9 \quad \text{e} \quad \mathcal{C}_2 : (a-4)^2+(b-4)^2 \le 16.\]

Queste si intersecano perciò l’estremo inferiore, che è anche un minimo, è necessariamente uguale a zero. Ad esempio, il punto (a,b)=(1,3) soddisfa

    \[\begin{aligned}& (1+2)^2+(3-3)^2 = 9 \le 9 \implies (1,3) \in \mathcal{C}_1, \\ & (1-4)^2+(3-4)^2 = 10 \le 16 \implies (1,3) \in \mathcal{C}_2, \end{aligned}\]

e quindi appartiene ad entrambe le circonferenze. Per trovare l’estremo superiore consideriamo la retta che passa per entrambi i centri, ovvero

    \[r :  b = \frac{a}{6}+\frac{10}{3}.\]

Vogliamo trovare i punti di intersezione di questa retta con le due circonferenze (escludendo poi quelli più vicini) perciò iniziamo con il risolvere il sistema

    \[\begin{cases} b  = \frac{a}{6}+\frac{10}{3}, \\ (a+2)^2+(a-3)^2=9. \end{cases}\]

Questa ha come soluzioni

    \[z_1 = \frac{18}{\sqrt{37}} - 2 + \left(3 + \frac{3}{\sqrt{37}}\right)\imath \quad \text{e} \quad z_2= -\frac{18}{\sqrt{37}} - 2 + \left(3 - \frac{3}{\sqrt{37}}\right)\imath,\]

ma è facile vedere che, per massimizzare la distanza, è sufficiente considerare z_2. Analogamente, il sistema di equazioni

    \[\begin{cases}b  = \frac{a}{6}+\frac{10}{3}, \\ (a-4)^2+(b-4)^2=16, \end{cases}\]

ha come soluzioni

    \[w_1 = 4 - \frac{24}{\sqrt{37}} + \left(4-\frac{4}{\sqrt{37}} \right)\imath \quad \text{e} \quad w_2 = 4 + \frac{24}{\sqrt{37}} + \left(4+\frac{4}{\sqrt{37}} \right)\imath\]

e, per lo stesso motivo già menzionato in precedenza, questa volta consideriamo soltanto w_2. Allora

    \[|z_2-w_2|^2 = (7+\sqrt{37})^2,\]

da cui segue che

    \[\sup B = \max B = 7 + \sqrt{37}.\]

Esercizio 5  (\bigstar\largewhitestar\largewhitestar\largewhitestar\largewhitestar). Determinare il luogo dei punti del piano dato dalle seguenti relazioni

    \[\begin{aligned} & A_1 = \left\{ z \in \mathbb C \: : \: |z| = |z+\imath|\right\}, 				\\ & A_2 =  \left\{ z \in \mathbb C \: : \: \mathfrak{Re}(z^2)>2 \right\}, 				\\ & A_3 =  \left\{ z \in \mathbb C \: : \: \mathfrak{Im}(1/z)=-1\right\}. 				\end{aligned}\]

Suggerimento.

Risolvere le equazioni/disequazioni per determinare il luogo dei punti che le soddisfano e poi verificare se si tratta di una figura geometrica nota.

Svolgimento punto 1.

Sia z = a + \imath b. L’insieme A_1 consiste di tutti i punti che soddisfano l’equazione

    \[|a+\imath b| = |a+\imath(b+1)|.\]

Possiamo elevare entrambi i termini al quadrato e calcolare il modulo

    \[a^2 + b^2 = a^2 + (b+1)^2\]

da cui, sviluppando e semplificando i termini comuni, si arriva a

    \[0 = 2b + 1.\]

Di conseguenza, un numero complesso z = a + \imath b appartiene ad A_1 se e solo se è della forma

    \[z = a + -\frac 12 \imath.\]

In altre parole, l’insieme A_1 è la retta parallela all’asse reale che passa per (0,-1/2) e possiamo scrivere

    \[A_1 = \left\{ z \in \mathbb C \: : \: \mathfrak{Im}(z) = - \frac12 \right\}.\]

Svolgimento punto 2.

Per determinare A_2 utilizziamo ancora la forma algebrica z = a + \imath b. Infatti, è immediato verificare che

    \[z^2 = a^2 - b^2 + \imath 2ab \implies \mathfrak{Re}(z^2)=a^2-b^2,\]

per cui la condizione di appartenenza ad A_2 è del tutto equivalente a

    \[a^2-b^2 > 2.\]

Pertanto, l’insieme A_2 è il complementare dell’iperbole di equazione x^2-y^2 \le 2 e si può scrivere come segue:

    \[ 	A_2 = \left\{ z \in \mathbb C \: : \: \pm \mathfrak{Re}(z) > \sqrt2 \text{ e } -\sqrt{\mathfrak{Re}(z)^2 -2} < \mathfrak{Im}(z) < \sqrt{\mathfrak{Re}(z)^2 +2}  \right\} 	\]

Svolgimento punto 3.

Infine, nel terzo caso (facendo ancora riferimento alla forma algebrica di z) la condizione di appartenenza si riscrive come

    \[\frac1z = \frac{1}{a+\imath b} = \frac{a}{a^2+b^2} - \imath \frac{b}{a^2+b^2},\]

da cui segue

    \[\mathfrak{Im}(1/z)=-1 \iff \frac{b}{a^2+b^2} = 1.\]

Moltiplicando per a^2+b^2 (diverso da zero, altrimenti 1/z non è definito) otteniamo l’equazione di una circonferenza, ovvero

    \[a^2 + b^2 - b = 0,\]

il cui centro è (0,1/2) e raggio 1/2.

Esercizio 6  (\bigstar\bigstar\largewhitestar\largewhitestar\largewhitestar). Si mostri che il seguente sottoinsieme dei numeri complessi,

    \[D = \left\{ z \in \mathbb{C} \: : \: \left| \frac{z-1}{z+1} \right|= 2 \right\},\]

è una circonferenza, e se ne determini raggio e centro.

Suggerimento.

Sfruttare il fatto che il modulo di un rapporto è uguale al rapporto dei moduli.

Svolgimento.

Dalla teoria sappiamo che il modulo di un rapporto è uguale al rapporto dei moduli, perciò (assumendo z \neq -1) si ha

    \[\left| \frac{z-1}{z+1} \right| = 2 \iff |z-1| = 2 |z+1|.\]

Sia z = a + \imath b. Dato che

    \[|z-1|=|(a-1) + \imath b| = \sqrt{(a-1)^2 + b^2} \quad \text{e} \quad |z+1|=\sqrt{(a+1)^2+b^2},\]

possiamo sostituire nell’equazione e trovare

    \[\sqrt{(a-1)^2+b^2} = 2 \sqrt{(a+1)^2+b^2}.\]

Dato che entrambi i termini sono positivi per ogni valore di a e b, eleviamo tutto al quadrato:

    \[(a-1)^2 + b^2 = 4(a+1)^2 + 4b^2.\]

A questo punto portiamo tutto a destra ed otteniamo

    \[3a^2 + 10a + 3b^2 + 3 = 0,\]

che è l’equazione della circonferenza di raggio \frac43 e centro (-\frac53,0).

Esercizio 7  (\bigstar\bigstar\bigstar\largewhitestar\largewhitestar). Si caratterizzi il luogo dei punti che descrive l’insieme

    \[D = \left\{ z \in \mathbb{C} \: : \: \text{Arg } \left( \frac{z-1}{z+1} \right)= \frac\pi2 \right\}.\]

Suggerimento.

Ricordare che dati z_1,z_2 \in \mathbb{C} con z_2\neq 0 si ha

    \[\begin{aligned} & \text{Arg } (z_1z_2)=\text{Arg } z_1 + \text{Arg } z_2 + 2\pi N_+, \\ & \text{Arg }(z_1/z_2) = \text{Arg } z_1 - \text{Arg } z_2 + 2 \pi N_-,  \end{aligned}\]

dove N_\pm sono le quantità definite come segue:

(1)   \begin{equation*} 			N_\pm(z_1,z_2) := \begin{cases} -1 & \text{se } \text{Arg } z_1 \pm \text{Arg } z_2 > \pi, \\  0& \text{se } -\pi<\text{Arg } z_1 \pm \text{Arg } z_2 \le \pi, \\ 1 & \text{se } \text{Arg }  z_1 \pm \text{Arg } z_2 \le -\pi.\end{cases}  	\end{equation*}

Svolgimento.

Dalla teoria sappiamo che la funzione argomento principale soddisfa la seguente proprietà

    \[\text{Arg } (z_1/z_2) = \text{Arg } z_1 - \text{Arg } z_2 + 2 \pi N_-,\]

dove N_-(z_1,z_2) è già stato definito in (1). Di conseguenza, si può caratterizzare l’insieme D trovando le soluzioni dell’equazione

    \[\text{Arg } (z-1)-\text{Arg } (z+1) + 2 \pi N_- = \frac\pi2.\]

Il lettore interessato a questo approccio può provare a risolverla ma, ai fini di questo documento, preferiamo una alternativa più semplice. Infatti, posto

    \[ 	w := \frac{z-1}{z+1}, 	\]

l’equazione si riduce a

    \[\text{Arg }  w = \frac\pi2.\]

Questa è di immediata risoluzione dato che avere argomento uguale a \pi/2 equivale ad avere parte reale zero e parte immaginaria positiva; ovvero si ha

    \[\text{Arg } w = \frac\pi2 \iff w = \imath v, \quad v > 0.\]

Per concludere ci basta esprimere parte immaginaria e reale di w in termini di z = a+ \imath b. Razionalizzando si ottiene

    \[\begin{aligned} 		w = \frac{z-1}{z+1} & = \frac{(a-1) + \imath b}{(a+1) + \imath b} \cdot \frac{(a+1)-\imath b}{(a+1)-\imath b} = 		\\ & = \frac{(a-1)(a+1) + b^2 + \imath (a+1)b - \imath (a-1)b }{(a+1)^2 + b^2}= 		\\ & = \frac{a^2 - 1 + b^2 + \imath (2b)}{(a+1)^2+b^2}, 	\end{aligned}\]

da cui segue che parte reale e immaginaria di w sono rispettivamente date da

    \[\mathfrak{Re}(w) = \frac{a^2+b^2-1}{(a+1)^2 + b^2} \quad \text{e} \quad \mathfrak{Im}(w) = \frac{2b}{(a+1)^2 + b^2}.\]

Per concludere, imponiamo le due condizioni trovate in precedenza, ovvero \mathfrak{Re}(w) = 0 e \mathfrak{Im}(w)>0. Si ha

    \[a^2 + b^2 - 1= 0 \qquad \text{e} \qquad b >0,\]

da cui segue che

    \[ 	D = \left\{ z \in \mathbb C \: : \: -1 < \mathfrak{Re}(z) < 1 \text{ e } \mathfrak{Im}(z) = \sqrt{1 - \mathfrak{Re}(z)^2}\right\}. 	\]


 

Riferimenti bibliografici

[1] S. L. Parsonson, Pure Mathematics Vol. 2, Cambridge University Press, 1970.

[2] C. Mantegazza, Problemi di Analisi I dal Corso del I Anno alla Scuola Normale Superiore di Pisa, MCM, 2016.

 
 

Tutta la teoria di analisi matematica

Leggi...

  1. Teoria Insiemi
  2. Il metodo della diagonale di Cantor
  3. Logica elementare
  4. Densità dei numeri razionali nei numeri reali
  5. Insiemi Numerici \left(\mathbb{N},\, \mathbb{Z},\, \mathbb{Q}\right)
  6. Il principio di induzione
  7. Gli assiomi di Peano
  8. L’insieme dei numeri reali: costruzione e applicazioni
  9. Concetti Fondamentali della Retta Reale: Sintesi Teorica
  10. Costruzioni alternative di \mathbb{R}
  11. Binomio di Newton
  12. Spazi metrici, un’introduzione
  13. Disuguaglianza di Bernoulli
  14. Disuguaglianza triangolare
  15. Teoria sulle funzioni
  16. Funzioni elementari: algebriche, esponenziali e logaritmiche
  17. Funzioni elementari: trigonometriche e iperboliche
  18. Funzioni goniometriche: la guida essenziale
  19. Teorema di Bolzano-Weierstrass per le successioni
  20. Criterio del rapporto per le successioni
  21. Definizione e proprietà del numero di Nepero
  22. Limite di una successione monotona
  23. Successioni di Cauchy
  24. Il teorema ponte
  25. Teoria sui limiti
  26. Simboli di Landau
  27. Funzioni continue – Teoria
  28. Il teorema di Weierstrass
  29. Il teorema dei valori intermedi
  30. Il teorema della permanenza del segno
  31. Il teorema di Heine-Cantor
  32. Il teorema di esistenza degli zeri
  33. Il metodo di bisezione
  34. Teorema ponte versione per le funzioni continue
  35. Discontinuità di funzioni monotone
  36. Continuità della funzione inversa
  37. Teorema delle contrazioni o Teorema di punto fisso di Banach-Caccioppoli
  38. Teoria sulle derivate
  39. Calcolo delle derivate: la guida pratica
  40. Teoria sulle funzioni convesse
  41. Il teorema di Darboux
  42. I teoremi di de l’Hôpital
  43. Teorema di Fermat
  44. Teoremi di Rolle e Lagrange
  45. Il teorema di Cauchy
  46. Espansione di Taylor: teoria, esempi e applicazioni pratiche
  47. Polinomi di Taylor nei limiti: istruzioni per l’uso
  48. Integrali definiti e indefiniti
  49. Teorema fondamentale del calcolo integrale (approfondimento)
  50. Integrali ricorsivi
  51. Formule del trapezio, rettangolo e Cavalieri-Simpson
  52. Teoria sugli integrali impropri
  53. Funzioni integrali – Teoria
  54. Introduzione ai numeri complessi – Volume 1 (per un corso di ingegneria — versione semplificata)
  55. Introduzione ai numeri complessi – Volume 1 (per un corso di matematica o fisica)
  56. Serie numeriche: la guida completa
  57. Successioni di funzioni – Teoria
  58. Teoremi sulle successioni di funzioni
    1. 58a. Criterio di Cauchy per la convergenza uniforme
    2. 58b. Limite uniforme di funzioni continue
    3. 58c. Passaggio al limite sotto il segno di integrale
    4. 58d. Limite uniforme di funzioni derivabili
    5. 58e. Piccolo teorema del Dini
    6. 58f. Procedura diagonale e teorema di Ascoli-Arzela
  59. Serie di funzioni – Teoria
  60. Serie di potenze – Teoria
  61. Serie di Fourier – Teoria e applicazioni
  62. Integrali multipli — Parte 1 (teoria)
  63. Integrali multipli — Parte 2 (teoria e esercizi misti)
  64. Regola della Catena — Teoria ed esempi.
  65. Jacobiano associato al cambiamento di coordinate sferiche
  66. Guida ai Massimi e Minimi: Tecniche e Teoria nelle Funzioni Multivariabili
  67. Operatore di Laplace o Laplaciano
  68. Teoria equazioni differenziali
  69. Equazione di Eulero
  70. Teoria ed esercizi sulla funzione Gamma di Eulero
  71. Teoria ed esercizi sulla funzione Beta
  72. Approfondimento numeri complessi
  73. Diverse formulazioni dell’assioma di completezza
  74. Numeri di Delannoy centrali
  75. Esercizi avanzati analisi

 
 

Tutte le cartelle di Analisi Matematica

Leggi...

  1. Prerequisiti di Analisi
    1. Ripasso algebra biennio liceo
    2. Ripasso geometria analitica
    3. Ripasso goniometria e trigonometria
    4. Errori tipici da evitare
    5. Insiemi numerici N,Z,Q,R
    6. Funzioni elementari
    7. Logica elementare
    8. Insiemi
  2. Successioni
    1. Teoria sulle Successioni
    2. Estremo superiore e inferiore
    3. Limiti base
    4. Forme indeterminate
    5. Limiti notevoli
    6. Esercizi misti Successioni
    7. Successioni per ricorrenza
  3. Funzioni
    1. Teoria sulle funzioni
    2. Verifica del limite in funzioni
    3. Limite base in funzioni
    4. Forme indeterminate in funzioni
    5. Limiti notevoli in funzioni
    6. Calcolo asintoti
    7. Studio di funzione senza derivate
    8. Dominio di una funzione
    9. Esercizi misti Funzioni
    10. Esercizi misti sui Limiti
  4. Funzioni continue-lipschitziane-holderiane
    1. Teoria sulle Funzioni continue-lipschitziane-holderiane
    2. Continuità delle funzioni
    3. Continuità uniforme
    4. Teorema degli zeri
    5. Esercizi sul teorema di Weierstrass senza l’uso delle derivate
  5. Calcolo differenziale
    1. Derivate
    2. Calcolo delle derivate
    3. Retta tangente nel calcolo differenziale
    4. Punti di non derivabilità nel calcolo differenziale
    5. Esercizi sul teorema di Weierstrass con l’uso delle derivate
    6. Studio di funzione completo nel calcolo differenziale
    7. Esercizi teorici nel calcolo differenziale
    8. Metodo di bisezione
    9. Metodo di Newton
  6. Teoremi del calcolo differenziale
    1. Teoria sui Teoremi del calcolo differenziale
    2. Teorema di Rolle
    3. Teorema di Lagrange
    4. Teorema di Cauchy
    5. Teorema di De L’Hôpital
  7. Calcolo integrale
    1. Integrale di Riemann
    2. Integrali immediati
    3. Integrale di funzione composta
    4. Integrali per sostituzione
    5. Integrali per parti
    6. Integrali di funzione razionale
    7. Calcolo delle aree
    8. Metodo dei rettangoli e dei trapezi
    9. Esercizi Misti Integrali Indefiniti
    10. Esercizi Misti Integrali Definiti
  8. Integrali impropri
    1. Teoria Integrali impropri
    2. Carattere di un integrale improprio
    3. Calcolo di un integrale improprio
  9. Espansione di Taylor
    1. Teoria Espansione di Taylor
    2. Limiti di funzione con Taylor
    3. Limiti di successione con Taylor
    4. Stime del resto
  10. Funzioni integrali (Approfondimento)
    1. Teoria Funzioni integrali (Approfondimento)
    2. Studio di funzione integrale
    3. Limiti con Taylor e De L’Hôpital
    4. Derivazione di integrali parametrici (Tecnica di Feynmann)
  11. Numeri Complessi
    1. Teoria Numeri complessi
    2. Espressioni con i numeri complessi
    3. Radice di un numero complesso
    4. Equazioni con i numeri complessi
    5. Disequazioni con i numeri complessi
    6. Esercizi misti Numeri complessi
  12. Serie numeriche
    1. Teoria Serie numeriche
    2. Esercizi Serie a termini positivi
    3. Esercizi Serie a termini di segno variabile
    4. Esercizi Serie geometriche e telescopiche
  13. Successioni di funzioni
    1. Teoria Successioni di funzioni
    2. Esercizi Successioni di funzioni
  14. Serie di funzioni
    1. Teoria Serie di funzioni
    2. Esercizi Serie di funzioni
  15. Serie di potenze
    1. Teoria Serie di potenze
    2. Esercizi Serie di potenze
  16. Serie di Fourier
    1. Teoria Serie di Fourier
    2. Esercizi Serie di Fourier
  17. Trasformata di Fourier
    1. Teoria Trasformata di Fourier
    2. Esercizi Trasformata di Fourier
  18. Funzioni di più variabili
    1. Teoria Funzioni di più variabili
    2. Massimi e minimi liberi e vincolati
    3. Limiti in due variabili
    4. Integrali doppi
    5. Integrali tripli
    6. Integrali di linea di prima specie
    7. Integrali di linea di seconda specie
    8. Forme differenziali e campi vettoriali
    9. Teorema di Gauss-Green
    10. Integrali di superficie
    11. Flusso di un campo vettoriale
    12. Teorema di Stokes
    13. Teorema della divergenza
    14. Campi solenoidali
    15. Teorema del Dini
  19. Equazioni differenziali lineari e non lineari
    1. Teoria equazioni differenziali lineari e non lineari
    2. Equazioni differenziali lineari e non lineari del primo ordine omogenee
  20. Equazioni differenziali lineari
    1. Del primo ordine non omogenee
    2. Di ordine superiore al primo,a coefficienti costanti,omogenee
    3. Di ordine superiore al primo,a coefficienti costanti,non omogenee
    4. Di Eulero,di Bernoulli,di Clairaut,di Lagrange e di Abel
    5. Non omogenee avente per omogenea associata un’equazione di Eulero
    6. Sistemi di EDO
  21. Equazioni differenziali non lineari
    1. A variabili separabiliO
    2. A secondo membro omogeneo
    3. Del tipo y’=y(ax+by+c)
    4. Del tipo y’=y(ax+by+c)/(a’x+b’y+c’)
    5. Equazioni differenziali esatte
    6. Mancanti delle variabili x e y
    7. Cenni sullo studio di un’assegnata equazione differenziale non lineare
    8. Di Riccati
    9. Cambi di variabile: simmetrie di Lie
  22. Analisi complessa
    1. Fondamenti
    2. Funzioni olomorfe
    3. Integrale di Cauchy e applicazioni
    4. Teorema della curva di Jordan e teorema fondamentale dell’Algebra
    5. Teorema di inversione di Lagrange
    6. Teorema dei Residui
    7. Funzioni meromorfe
    8. Prodotti infiniti e prodotti di Weierstrass
    9. Continuazione analitica e topologia
    10. Teoremi di rigidità di funzioni olomorfe
    11. Trasformata di Mellin
  23. Equazioni alle derivate parziali
    1. Equazioni del primo ordine
    2. Equazioni del secondo ordine lineari
    3. Equazioni non-lineari
    4. Sistemi di PDE
  24. Funzioni speciali
    1. Funzione Gamma di Eulero
    2. Funzioni Beta,Digamma,Trigamma
    3. Integrali ellittici
    4. Funzioni di Bessel
    5. Funzione zeta di Riemann e funzioni L di Dirichlet
    6. Funzione polilogaritmo
    7. Funzioni ipergeometriche
  25. Analisi funzionale
    1. Misura e integrale di Lebesgue
    2. Spazi Lp,teoremi di completezza e compattezza
    3. Spazi di Hilbert,serie e trasformata di Fourier
    4. Teoria e pratica dei polinomi ortogonali
    5. Spazi di Sobolev
  26. Complementi
    1. Curiosità e approfondimenti
    2. Compiti di analisi
    3. Esercizi avanzati analisi
  27. Funzioni Convesse

 
 

Tutti gli esercizi di geometria

In questa sezione vengono raccolti molti altri esercizi che coprono tutti gli argomenti di geometria proposti all’interno del sito con lo scopo di offrire al lettore la possibilità di approfondire e rinforzare le proprie competenze inerenti a tali argomenti.

Strutture algebriche.


 
 

Risorse didattiche aggiuntive per approfondire la matematica

Leggi...

  • Math Stack Exchange – Parte della rete Stack Exchange, questo sito è un forum di domande e risposte specificamente dedicato alla matematica. È una delle piattaforme più popolari per discutere e risolvere problemi matematici di vario livello, dall’elementare all’avanzato.
  • Art of Problem Solving (AoPS) – Questo sito è molto noto tra gli studenti di matematica di livello avanzato e i partecipanti a competizioni matematiche. Offre forum, corsi online, e risorse educative su una vasta gamma di argomenti.
  • MathOverflow – Questo sito è destinato a matematici professionisti e ricercatori. È una piattaforma per domande di ricerca avanzata in matematica. È strettamente legato a Math Stack Exchange ma è orientato a un pubblico con una formazione più avanzata.
  • PlanetMath – Una comunità collaborativa di matematici che crea e cura articoli enciclopedici e altre risorse di matematica. È simile a Wikipedia, ma focalizzata esclusivamente sulla matematica.
  • Wolfram MathWorld – Una delle risorse online più complete per la matematica. Contiene migliaia di articoli su argomenti di matematica, creati e curati da esperti. Sebbene non sia un forum, è una risorsa eccellente per la teoria matematica.
  • The Math Forum – Un sito storico che offre un’ampia gamma di risorse, inclusi forum di discussione, articoli e risorse educative. Sebbene alcune parti del sito siano state integrate con altri servizi, come NCTM, rimane una risorsa preziosa per la comunità educativa.
  • Stack Overflow (sezione matematica) – Sebbene Stack Overflow sia principalmente noto per la programmazione, ci sono anche discussioni rilevanti di matematica applicata, specialmente nel contesto della scienza dei dati, statistica, e algoritmi.
  • Reddit (r/Math) – Un subreddit popolare dove si possono trovare discussioni su una vasta gamma di argomenti matematici. È meno formale rispetto ai siti di domande e risposte come Math Stack Exchange, ma ha una comunità attiva e molte discussioni interessanti.
  • Brilliant.org – Offre corsi interattivi e problemi di matematica e scienza. È particolarmente utile per chi vuole allenare le proprie capacità di problem solving in matematica.
  • Khan Academy – Una risorsa educativa globale con lezioni video, esercizi interattivi e articoli su una vasta gamma di argomenti di matematica, dalla scuola elementare all’università.






Document









Document








Document









Document