L’Esercizio Urti 33 è il trentatreesimo della raccolta dedicata agli esercizi misti sugli urti. Questo esercizio segue l’Esercizio Urti 32. Successivamente, gli studenti potranno affrontare l’Esercizio Urti 34. Pensato per gli studenti di Fisica 1, è particolarmente utile per coloro che studiano ingegneria, fisica o matematica.
L’argomento successivo agli urti riguarda gli esercizi sulla gravitazione, mentre l’argomento precedente tratta gli esercizi svolti sulla dinamica del corpo rigido.
Testo esercizio urti 33
Esercizio 33 . Un carrello di massa
può scorrere su un piano orizzontale liscio ed è sagomato in modo che la faccia superiore sia piana ed inclinata di un angolo
rispetto all’orizzontale. Una sferetta di massa
urta perpendicolarmente la faccia superiore del carrello, che inizialmente è in quiete. Il modulo della velocità prima dell’urto è
. Si calcoli la velocità
del carrello nei seguenti casi:
- nel caso in cui l’urto sia completamente anelastico;
- nel caso in cui l’urto sia perfettamente elastico.
Prerequisiti
- Durante un urto, in assenza di vincoli, la quantità di moto si conserva integralmente. Tuttavia, nella pratica fisica, si osserva che spesso la conservazione della quantità di moto avviene in maniera parziale, limitatamente a una specifica direzione. Ciò accade perché, in tale direzione, non si manifestano vincoli che potrebbero altrimenti influenzare il sistema.
- Un urto elastico è un tipo di collisione tra due o più corpi durante la quale l’energia cinetica totale del sistema si conserva. Ciò significa che la somma delle energie cinetiche dei corpi prima dell’urto è uguale alla somma delle loro energie cinetiche dopo l’urto. Le caratteristiche principali di un urto elastico includono:
- Conservazione dell’energia cinetica: La condizione di conservazione dell’energia cinetica si può esprimere come
dove
è la massa dell’i-esimo corpo, e
e
sono le velocità dell’i-esimo corpo prima e dopo l’urto, rispettivamente.
- Conservazione della quantità di moto: La quantità di moto totale del sistema prima dell’urto è uguale alla quantità di moto totale dopo l’urto, esprimibile come
L’equazione sopra citata è applicabile unicamente in assenza di vincoli. Nei casi di urti elastici, la conservazione si limita all’energia cinetica quando vi sono vincoli che introducono forze esterne impulsive durante la collisione. Queste forze impediscono la conservazione della quantità di moto del sistema, in quanto sono esterne.
- Nessuna deformazione permanente: I corpi coinvolti nell’urto non subiscono deformazioni permanenti e ritornano alla loro forma originale dopo la collisione.
- Un urto anelastico è un tipo di collisione tra due o più corpi in cui parte dell’energia cinetica del sistema non si conserva come energia cinetica dopo l’urto. A differenza degli urti elastici, dove l’energia cinetica totale del sistema rimane invariata prima e dopo la collisione, negli urti anelastici una parte di questa energia viene trasformata in altre forme di energia, come energia interna, calore, o contribuisce a deformazioni permanenti dei corpi coinvolti.Le caratteristiche principali di un urto anelastico includono:
- Non conservazione dell’energia cinetica: La somma delle energie cinetiche dei corpi prima dell’urto è maggiore rispetto a quella dopo l’urto. La differenza di energia si trasforma in altre forme, come espresso dalla formula:
- Conservazione della quantità di moto: La quantità di moto totale del sistema si conserva durante l’urto. Questo principio è valido per tutti i tipi di collisioni e si esprime come:
Anche in questo caso, la precedente equazione vale se e solo se, non ci sono vincoli.
- Possibili deformazioni permanenti: I corpi coinvolti nell’urto possono subire deformazioni permanenti a causa dell’energia assorbita durante la collisione.
- Un urto completamente anelastico è un caso specifico di urto anelastico in cui i corpi coinvolti nella collisione si uniscono, formando un unico corpo che si muove con una velocità comune dopo l’urto. Se non agiscono vincoli, cioè forze esterne di natura impulsiva nell’urto, si conserva la quantità di moto. Un classico esempio di urto completamente anelastico si verifica quando un proiettile viene sparato in un blocco di legno sospeso e rimane incastrato al suo interno. Dopo l’urto, il proiettile e il blocco si muovono insieme come un unico corpo. La quantità di moto totale è conservata, mentre parte dell’energia cinetica iniziale viene dissipata in forme non recuperabili, come calore o energia interna del sistema combinato.
Svolgimento punto 1.
In letteratura, è comune riferirsi a questo fenomeno come conservazione parziale della quantità di moto, intendendo che la quantità di moto si conserva solo lungo una specifica direzione, che nel nostro caso è l’asse orizzontale. Stabilendo un sistema di riferimento fisso , possiamo analizzare l’urto da questa prospettiva.
Nella figura 1 è rappresentata la velocità della sferetta un istante prima dell’urto.
Nel sistema di riferimento prescelto, dove l’asse rappresenta la direzione orizzontale, osserviamo la conservazione della quantità di moto lungo questo asse. Dato che il carrello, inizialmente in quiete, non apporta alcun contributo alla quantità di moto del sistema e considerando la decomposizione della velocità iniziale della sferetta nei suoi componenti lungo gli assi, con
(
e
indicano rispettivamente il verso dell’asse delle
e il versore dell’asse delle
), possiamo esprimere la quantità di moto iniziale del sistema nella direzione orizzontale come segue:
Nella figura 2, mostriamo il sistema immediatamente dopo l’urto. È importante notare che, a causa dell’urto completamente anelastico, i due corpi coinvolti si uniscono in un unico corpo di massa , che procede verso l’asse positivo delle
. Questo risultato deriva dal fatto che la forza impulsiva esercitata sul carrello durante l’urto, perpendicolare alla sua superficie superiore, ha una componente verticale diretta verso il basso (asse negativo delle
) che viene annullata dalla forza impulsiva reattiva del suolo, agendo come vincolo. Contemporaneamente, la componente orizzontale della forza impulsiva dirige il sistema unito verso il lato positivo dell’asse delle
. Di conseguenza, la velocità del sistema combinato,
, è diretta come in figura 2.
La quantità di moto dopo l’urto è:
Imponendo la conservazione della quantità di moto, per le due precedenti equazioni, otteniamo:
da cui
Questo risultato fornisce la velocità richiesta nel primo punto, poiché risulta che .
Svolgimento punto 2.
L’energia cinetica del sistema prima dell’urto proviene solo dalla sferetta, dato che il carrello è inizialmente in quiete. Di conseguenza, l’energia totale del sistema è:
Esaminando la quantità di moto del sistema dopo l’urto, e riferendoci alla figura 4, notiamo che la sferetta rimbalza indietro con velocità , mentre il carrello si sposta verso il lato positivo dell’asse delle
con velocità
.
Analizzando le componenti lungo l’asse delle delle velocità
e
, che sono rispettivamente
e
, e considerando
come il modulo di
, calcoliamo la quantità di moto del sistema lungo l’asse delle
dopo l’urto. Si ottiene:
L’energia cinetica totale del sistema dopo l’urto, essendo la somma delle energie cinetiche dei singoli corpi, è
Per garantire la conservazione della quantità di moto e dell’energia tra il momento prima e quello dopo l’urto, impostiamo il sistema di equazioni seguente:
Sfruttando le equazioni (5) e (6), dalla prima equazione del precedente sistema, otteniamo:
Sostituendo , ottenuta nella precedente equazione, nella seconda equazione del sistema (8), si trova:
dove abbiamo diviso entrambi i membri della terzultima equazione per , assumendo che
, poiché un valore nullo non sarebbe fisicamente plausibile.
Dunque, concludiamo che la velocità dopo l’urto del carrello è quella che segue:
Scarica gli esercizi svolti
Ottieni il documento contenente 39 esercizi risolti, contenuti in 154 pagine ricche di dettagli, per migliorare la tua comprensione degli urti in meccanica classica.
Esercizi di Meccanica classica
Se siete interessati ad approfondire argomenti inerenti alla Meccanica Classica, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.
Leggi..
- Cinematica del punto materiale.
- Dinamica del punto materiale: le leggi di Newton nella meccanica classica.
- Dinamica del punto materiale: lavoro ed energia.
- Moti relativi.
- Sistemi di punti materiali.
- Dinamica del corpo rigido.
- Urti .
- Gravitazione .
- Oscillazioni e onde.
- Meccanica dei fluidi.
- Onde meccaniche.
- Statica in meccanica classica.
- Fondamenti di relatività ristretta: trasformazioni di Lorentz e principali conseguenze.
- Calcolo del centro di massa e dei momenti d’inerzia.
Tutti gli esercizi di elettromagnetismo
Se si desidera proseguire con gli esercizi, di seguito è disponibile una vasta raccolta che copre interamente gli argomenti del programma di
Leggi...
- Esercizi su lavoro elettrico e potenziale elettrico.
- Esercizi sulla legge di Gauss.
- Esercizi sui conduttori, condensatori, dielettrici ed energia elettrostatica.
- Esercizi sulla corrente elettrica.
- Esercizi sul campo magnetico e forza magnetica.
- Esercizi sulle sorgenti di un campo magnetico e legge di Ampere.
- Esercizi su campi elettrici e magnetici variabili nel tempo.
- Esercizi su oscillazione del campo elettrico e correnti alternate.
- Esercizi sulle onde elettromagnetiche.
- Esercizi sulla riflessione e rifrazione della luce.
- Esercizi sull’ ottica geometrica.
- Esercizi sull’ interferenza.
- Esercizi sulla diffrazione.
- Esercizi sulle proprietà corpuscolari e ondulatorie della materia.
Per chi intende verificare le proprie competenze, è stata predisposta una raccolta di esercizi misti di elettromagnetismo.
Esercizi di Meccanica razionale
Se siete interessati ad approfondire argomenti inerenti alla Meccanica razionale, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.
Leggi...
Ulteriori risorse didattiche per la fisica
Leggi...
- Physics Stack Exchange – Parte della rete Stack Exchange, questo sito è un forum di domande e risposte specificamente dedicato alla fisica. È un’ottima risorsa per discutere e risolvere problemi di fisica a tutti i livelli, dall’elementare all’avanzato.
- ArXiv – ArXiv è un archivio di preprint per articoli di ricerca in fisica (e in altre discipline scientifiche). Gli articoli non sono peer-reviewed al momento della pubblicazione su ArXiv, ma rappresentano un’importante risorsa per rimanere aggiornati sugli sviluppi più recenti nella ricerca fisica.
- Phys.org – Questo sito offre notizie e aggiornamenti su una vasta gamma di argomenti scientifici, con un focus particolare sulla fisica. È una risorsa utile per rimanere aggiornati sugli ultimi sviluppi nella ricerca e nelle scoperte fisiche.
- Physics Forums – Una delle comunità online più grandi per la fisica e la scienza in generale. Offre discussioni su vari argomenti di fisica, aiuto con i compiti, e discussioni su articoli di ricerca.
- The Feynman Lectures on Physics – Questo sito offre accesso gratuito alla famosa serie di lezioni di fisica di Richard Feynman, un’ottima risorsa per studenti di fisica di tutti i livelli.
- American Physical Society (APS) – La APS è una delle organizzazioni più importanti per i fisici. Il sito offre accesso a pubblicazioni, conferenze, risorse educative e aggiornamenti sulle novità del mondo della fisica.
- Institute of Physics (IOP) – L’IOP è un’importante organizzazione professionale per i fisici. Il sito offre risorse per l’apprendimento, accesso a riviste scientifiche, notizie e informazioni su eventi e conferenze nel mondo della fisica.
- Physics World – Physics World è una rivista online che offre notizie, articoli, interviste e approfondimenti su vari argomenti di fisica. È una risorsa preziosa per chiunque sia interessato agli sviluppi contemporanei nella fisica.
- Quanta Magazine (sezione Fisica) – Quanta Magazine è una pubblicazione online che copre notizie e articoli di approfondimento su matematica e scienze. La sezione fisica è particolarmente interessante per i contenuti di alta qualità e le spiegazioni approfondite.
- Perimeter Institute – Il Perimeter Institute è un importante centro di ricerca in fisica teorica. Il sito offre accesso a conferenze, workshop e materiale educativo, ed è un’ottima risorsa per chi è interessato alla fisica teorica avanzata.