Qui si risolve LOGO
a

Menu

M

Chiudi

Esercizi svolti sui limiti notevoli

Limiti notevoli in funzioni

Home » Esercizi svolti sui limiti notevoli

Benvenuti nella raccolta di esercizi svolti sui limiti notevoli, un concetto fondamentale dell’analisi matematica. Troverete una selezione accurata di 100 esercizi, di vari livelli di difficoltà. Ciascun esercizio è stato scelto per illustrare un’idea o una tecnica utile, che potete trovare nelle soluzioni dettagliate proposte.

Auguriamo una piacevole lettura e un proficuo approfondimenti sia ai neofiti della matematica che agli esperti.

Si vedano i richiami sui limiti notevoli per un ripasso veloce oppure l’articolo di Teoria sui limiti per un riferimento completo di tutte le dimostrazioni.

Come ulteriore materiale, si consiglia la lettura degli esercizi sulle forme indeterminate e degli esercizi misti sui limiti.

 

Esercizi svolti sui limiti notevoli: autori e revisori

Mostra autori e revisori.


 

Esercizi svolti sui limiti notevoli: testi

 

Esercizio 1   (\bigstar\largewhitestar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1.\quad \lim\limits_{x \to 0} \dfrac{2 \tan x + x}{x};\\[6pt] & 2.\quad \lim\limits_{x \to 0} \dfrac{\sin x + 5x}{x + 2 \sin x};\\[6pt] &3.\quad \lim\limits_{x \to 0} \dfrac{2x \sin x}{\tan^2 x};\\[6pt] &4.\quad \lim\limits_{x \to 0} \dfrac{2 \sin x + 5x}{3 \sin x - x};\\[6pt] &5.\quad \lim\limits_{x \to 0} \dfrac{\sin x - 2x}{x}. \end{aligned}\]

 
Svolgimento esercizio 1 sui limiti notevoli.
 

Esercizio 2   (\bigstar\largewhitestar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 0} \dfrac{x^2}{\sin x};\\[6pt] &2. \quad \lim\limits_{x \to 0} \dfrac{\sin 2x + x}{x +  \sin x};\\[6pt] &3. \quad \lim\limits_{x \to 0} \dfrac{x^2 + x}{2x+\sin x};\\[6pt] &4. \quad \lim\limits_{x \to \frac{\pi}{2}} \dfrac{\cos x }{1- \sin x };\\[6pt] &5. \quad \lim\limits_{x \to +\infty} \left(\dfrac{x^2-2x+1}{x^2-4x+7}\right)^{\frac{x^2-x+3}{2x^2 + 5}}. \end{aligned}\]

 
Svolgimento esercizio 2 sui limiti notevoli.
 

Esercizio 3   (\bigstar\largewhitestar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to +\infty} \left( 1 + \dfrac{1}{x^x}\right)^{(x+1)^x};\\[6pt] &2. \quad \lim\limits_{x \to +\infty}\left( \dfrac{x^4+5x^2+5}{(x^2+1)(x^2+2)}\right)^{x^2};\\[6pt] &3. \quad \lim\limits_{x \to 0} \dfrac{\sin^2 x - 8^x + e^{-x}}{x};\\[6pt] &4. \quad \lim\limits_{x \to 0^+} \dfrac{\sqrt{1-\cos x }}{x };\\[6pt] &5. \quad \lim\limits_{x \to 0} \dfrac{1- \cos x - \sin x}{x}. \end{aligned}\]

 
Svolgimento esercizio 3 sui limiti notevoli.
 

Esercizio 4   (\bigstar\largewhitestar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim_{x \to +\infty} \left(1+\dfrac{3}{2\sqrt{x}}\right)^x;\\[6pt] &2. \quad \lim_{x \to 0} \dfrac{1-\cos x - \sin x}{x^2};\\[6pt] &3. \quad \lim_{x \to 0} \dfrac{\sin^2 2x}{x \; \tan x};\\[6pt] &4. \quad \lim_{x \to \alpha} \dfrac{\sin x - \sin \alpha}{x-\alpha}, \qquad \alpha \in \mathbb{R};\\[6pt] &5. \quad \lim_{x \to \frac{\pi}{6}} \dfrac{2\cos x - \sqrt{3}}{6x-\pi}. \end{aligned}\]

 
Svolgimento esercizio 4 sui limiti notevoli.
 

Esercizio 5   (\bigstar\largewhitestar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 3} \dfrac{x-3}{\ln \left(\frac{x}{3}\right)};\\[6pt] &2. \quad \lim\limits_{x \to +\infty} \left(\dfrac{3x-2}{3x+3}\right)^{2x-1};\\[6pt] &3. \quad\lim\limits_{x \to 0^+} \dfrac{x^3}{1-\cos x + \sin \frac{x}{2}};\\[6pt] &4. \quad \lim\limits_{x \to +\infty} \left(\dfrac{5x+3}{5x-1}\right)^{2x-1};\\[6pt] &5. \quad \lim\limits_{x \to \frac{\pi}{6}} \dfrac{2\sin x - 1}{2 \sin(2x)-\sqrt{3}}. \end{aligned}\]

 
Svolgimento esercizio 5 sui limiti notevoli.
 

Esercizio 6   (\bigstar\largewhitestar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 0} \dfrac{x^3}{2 \sin^2 \frac{x}{2} + \sin \frac{x}{2}};\\[6pt] &2. \quad \lim\limits_{x \to 0} \dfrac{\ln(1+x)}{\sin(2x) + \sin x};\\[6pt] &3. \quad \lim\limits_{x \to 0} \dfrac{2 \sin(1-e^x)}{e^x-1};\\[6pt] &4. \quad \lim\limits_{x \to 0} \dfrac{2^{3x}-1}{2x};\\[6pt] &5. \quad \lim\limits_{x \to 0} \dfrac{\cos(2x)-\cos x}{\cos x-1}. \end{aligned}\]

 
Svolgimento esercizio 6 sui limiti notevoli.
 

Esercizio 7   (\bigstar\bigstar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 0}\dfrac{3 \sin x}{4 \ln(1+x)};\\[6pt] &2. \quad \lim\limits_{x \to 0} \dfrac{e^x+e^{-x}-2}{3x^2};\\[6pt] &3. \quad \lim\limits_{x \to 0} \dfrac{\cos x - e^x}{\sin x};\\[6pt] &4. \quad \lim\limits_{x \to \frac{\pi}{2}} \dfrac{\cos x}{3^{2\cos x}-1};\\[6pt] &5. \quad \lim\limits_{x \to +\infty} \left(\dfrac{x+2}{x+1}\right)^x. \end{aligned}\]

 
Svolgimento esercizio 7 sui limiti notevoli.
 

Esercizio 8  (\bigstar\bigstar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to +\infty} \left(\dfrac{3x-1}{3x+2}\right)^{\frac{x}{2}};\\[6pt] &2. \quad \lim\limits_{x \to \frac{\pi}{2}} (1-\cos x)^{\tan x};\\[6pt] &3. \quad\lim\limits_{x \to +\infty}\left(\dfrac{x+1}{2x-1}\right)^{\frac{x^2-1}{x}};\\[6pt] &4. \quad \lim\limits_{x \to +\infty} \left(\dfrac{3\sqrt{x}-1}{3\sqrt{x}+2}\right)^{\sqrt{x}};\\[6pt] &5. \quad \lim\limits_{x \to +\infty} \left(\dfrac{2x+4}{2x+3}\right)^{x-3}. \end{aligned}\]

 
Svolgimento esercizio 8 sui limiti notevoli.
 

Esercizio 9   (\bigstar\bigstar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to +\infty} \left(1-\dfrac{3}{2x+1}\right)^{x};\\[6pt] &2. \quad \lim\limits_{x \to 0^+} \dfrac{1-\sqrt{\cos x}}{x^2};\\[6pt] &3. \quad \lim\limits_{x \to \frac{\pi}{4}} \dfrac{\cos(2x)}{\cos x - \cos \frac{\pi}{4}};\\[6pt] &4. \quad \lim\limits_{x \to- \alpha} \dfrac{\sin(x+\alpha)}{\cos^2x-\cos^2\alpha}, \qquad \alpha\in \mathbb{R};\\[6pt] &5. \quad \lim\limits_{x \to 0} \dfrac{(1+2x)^4-1}{x}. \end{aligned}\]

 
Svolgimento esercizio 9 sui limiti notevoli.
 

Esercizio 10   (\bigstar\bigstar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 1^+} \dfrac{e^{x-1}-1}{1-\cos(1-x)};\\[6pt] &2. \quad \lim\limits_{x \to 0} \dfrac{1-\cos x}{\ln(1+\tan^2x)};\\[6pt] &3. \quad \lim\limits_{x \to 0} \dfrac{3^{\sin x}-1}{x};\\[6pt] &4. \quad \lim\limits_{x \to \pi} \dfrac{\cos x + \cos(2x)}{(x-\pi)^2};\\[6pt] &5. \quad \lim\limits_{x \to +\infty} \left(\dfrac{x}{x+1}\right)^{2x+1}. \end{aligned}\]

 
Svolgimento esercizio 10 sui limiti notevoli.
 

Esercizio 11   (\bigstar\bigstar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 0} \dfrac{\sin(3x)(1-\cos x)}{x^2 \sin(6x)};\\[6pt] &2. \quad \lim\limits_{x \to 0^+} \dfrac{\sin(x^2+x)}{x^2};\\[6pt] &3. \quad\lim\limits_{x \to +\infty} \dfrac{5}{x} \; \left(\ln(1+x)-\ln x\right);\\[6pt] &4. \quad \lim\limits_{x \to 0} \dfrac{(1+x^2-x)^{\sqrt{2}}-1}{x};\\[6pt] &5. \quad \lim\limits_{x \to +\infty} \left(\dfrac{3x-4}{3x+2}\right)^{\frac{x+1}{3}} . \end{aligned}\]

 
Svolgimento esercizio 11 sui limiti notevoli.
 

Esercizio 12   (\bigstar\bigstar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 1} \dfrac{\ln(7x-6)}{\ln(3x-2)};\\[6pt] &2. \quad\lim\limits_{x \to 0} \dfrac{e^{2x}-e^x}{\ln(1+2x)};\\[6pt] &3. \quad \lim\limits_{x \to 4} \dfrac{4^{x-1}-64}{2(x^2-3x-4)};\\[6pt] &4. \quad \lim\limits_{x \to 0^+} \left( \ln x - \ln(\sin(2x)) \right);\\[6pt] &5. \quad \lim\limits_{x \to 0^+} \left(\dfrac{\sin(2x)}{x}\right)^{x+1} . \end{aligned}\]

 
Svolgimento esercizio 12 sui limiti notevoli.
 

Esercizio 13   (\bigstar\bigstar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 0} \dfrac{1-\cos(3x)}{x\sin x};\\[6pt] &2. \quad \lim\limits_{x \to 0} \dfrac{2x+\sin(3x)}{4x + \sin (7x)};\\[6pt] &3. \quad \lim\limits_{x \to 0} \dfrac{e^x-e^{-x}}{e^{2x}-e^{-2x}};\\[6pt] &4. \quad \lim\limits_{x \to 0} \dfrac{2 \sin x + 5x}{3 \sin x - x};\\[6pt] &5. \quad \lim\limits_{x \to 0} \dfrac{\arcsin(6x)}{\arctan(5x)} . \end{aligned}\]

 
Svolgimento esercizio 13 sui limiti notevoli.
 

Esercizio 14   (\bigstar\bigstar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 0} \dfrac{(1+4x^2)^3-1}{x^2};\\[6pt] &2. \quad \lim\limits_{x \to 0} \dfrac{\sqrt[5]{1+x}-1}{x};\\[6pt] &3. \quad \lim\limits_{x \to 0} \dfrac{\ln(1-x)^2}{x};\\[6pt] &4. \quad \lim\limits_{x \to +\infty} x\left[ \ln(x^2+4)-2\ln x\right] ;\\[6pt] &5. \quad \lim\limits_{x \to 0} \dfrac{(1+2x)^5-1}{5x}. \end{aligned}\]

 
Svolgimento esercizio 14 sui limiti notevoli.
 

Esercizio 15   (\bigstar\bigstar\largewhitestar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to +\infty} \dfrac{(1-x)^{2x}}{(1+x^2)^x};\\[6pt] &2. \quad \lim\limits_{x \to e} \dfrac{\ln x^2-2}{x-e};\\[6pt] &3. \quad \lim\limits_{x \to \frac{\pi}{2}} \dfrac{\sin x-1}{\cos x \,\left( \cos\frac{x}{2}-\sin\frac{x}{2}\right) };\\[6pt] &4. \quad \lim\limits_{x \to 0} \dfrac{e^{-x}+\sin x-\cos x}{x};\\[6pt] &5. \quad \lim\limits_{x \to 0} \dfrac{\sqrt[4]{1+x^3}-1}{x^3-x^4}. \end{aligned}\]

 
Svolgimento esercizio 15 sui limiti notevoli.
 

Esercizio 16   (\bigstar\bigstar\bigstar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 0} \dfrac{e^{\sin(2x)}-e^{\sin x}}{\tan x};\\[6pt] &2. \quad \lim\limits_{x \to +\infty} 2^{-x}\cdot\left( 2+\dfrac{3}{x}\right) ^x;\\[6pt] &3. \quad \lim\limits_{x \to +\infty} x\left[ \ln(2x+1)-\ln x-\ln 2\right] ;\\[6pt] &4. \quad \lim\limits_{x \to 0} \dfrac{e^x-e^{-x}}{\ln(1+x)};\\[6pt] &5. \quad \lim\limits_{x \to 0} \dfrac{\sin^2 x+3e^x-3+x^3}{\ln(1+x)^2+2x-\cos x+1}. \end{aligned}\]

 
Svolgimento esercizio 16 sui limiti notevoli.
 

Esercizio 17   (\bigstar\bigstar\bigstar\largewhitestar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 0} \dfrac{1-\sqrt{\cos x}}{\sqrt{1-\cos x}};\\[6pt] &2. \quad \lim\limits_{x \to 0^+} \dfrac{ \left( \sin x\right) ^{ \sin x}-1}{ \sqrt{\ln\left( \dfrac{1}{\cos x}\right) }};\\[6pt] &3. \quad \lim\limits_{x \to 0^+} \dfrac{ \left( \cos x\right) ^{ \cos x}-1}{ \left( \sin x\right) ^{ \sin x}-1};\\[6pt] &4. \quad \lim\limits_{x \to 0^+} \dfrac{\left( \sin 2x\right) ^{ \sin x}-1}{\left( \sin x\right) ^{ \sin 2x}-1};\\[6pt] &5. \quad \lim\limits_{x \to \frac{\pi}{2}} \dfrac{\cos x}{1-\sin x}. \end{aligned}\]

 
Svolgimento esercizio 17 sui limiti notevoli.
 

Esercizio 18   (\bigstar\bigstar\bigstar\bigstar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 0} \dfrac{\left( e^{\sin x}-1\right)\cdot \tan x}{1-\cos x};\\[6pt] &2. \quad \lim\limits_{x \to 0} \dfrac{\left( e^{5x^2}-1\right) \cdot\ln^2\left( 1+3x\right) }{1-\cos\left( x^2\right) };\\[6pt] &3. \quad \lim\limits_{x \to 0} \dfrac{\left( 4^x-1\right) \cdot\log_2\left( \cos x\right) }{\sqrt[9]{1+9x^3}-1};\\[6pt] &4. \quad \lim\limits_{x \to 0} \dfrac{\left( \sqrt[9]{\cos(6x)}-1\right)\cdot \arctan x}{\left( e^{\cos x}-e\right) \cdot\ln(1+\sin x)};\\[6pt] &5. \quad \lim\limits_{x \to 0} \dfrac{(1+2x)^{5x^2}-1}{(1+3x)^{4x^2}-1}. \end{aligned}\]

 
Svolgimento esercizio 18 sui limiti notevoli.
 

Esercizio 19   (\bigstar\bigstar\bigstar\bigstar\largewhitestar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to 0^+} \dfrac{\pi-2\arctan\dfrac{1}{x^3}}{\tan(2x)-\sin(2x)};\\[6pt] &2. \quad \lim\limits_{x \to 0} \dfrac{\ln(\cos x)+\ln(2-\cos x) }{x\cdot(\tan x-\sin x) };\\[6pt] &3. \quad \lim\limits_{x \to 0^+} \dfrac{\left( \cos\sqrt{x}\right) ^{\sin x}-1 }{\sqrt[3]{\cos x}-1};\\[6pt] &4. \quad \lim\limits_{x \to \pi} \dfrac{\sin^2x}{\ln(2+\cos x)};\\[6pt] &5. \quad \lim\limits_{x \to +\infty} \dfrac{\sin\left( 1-\cos\dfrac{1}{x}\right) \cdot\arctan(1-x)}{e^{\frac{1}{x^2}}-1}. \end{aligned}\]

 
Svolgimento esercizio 19 sui limiti notevoli.
 

Esercizio 20   (\bigstar\bigstar\bigstar\bigstar\bigstar). Calcolare, se esistono, i seguenti limiti applicando solo i limiti notevoli:

    \[\begin{aligned} &1. \quad \lim\limits_{x \to +\infty} \left(\dfrac{4^{\frac{1}{x^2}}+6^{\frac{1}{x^2} } }{3^{\frac{1}{x^2}}+5^{\frac{1}{x^2}}}\right)^{x^2};\\[6pt] &2. \quad \lim\limits_{x \to 0} \dfrac{\ln(\cos(\alpha x))}{\ln(\cos(\beta x))}, \qquad \alpha \in \mathbb{R}, \beta \in \mathbb{R}\setminus\{0\} ;\\[6pt] &3. \quad \lim\limits_{x \to 0^+} (\text{settsinh}(x))^{\cot x};\\[6pt] &4. \quad \lim\limits_{x \to 0^+} \dfrac{(1+\alpha x)^{\frac{1}{x}} + \sqrt{ \sin(\pi x^\alpha)}}{ 1-\cos(3 \sqrt{x})}, \qquad \alpha >0 ;\\[6pt] &5. \quad \lim\limits_{x \to +\infty} \dfrac{\ln\left(1+\frac{1}{x^3}\right)^4}{\left(\text{arcsin}\left(\frac{1}{x}\right)\right)^3 - \frac{1}{x^\alpha}\sin\left( \frac{1}{x}\right)}, \qquad \alpha > -1. \end{aligned}\]

 
Svolgimento esercizio 20 sui limiti notevoli.
 
 

Risorse didattiche aggiuntive per approfondire la matematica

Leggi...

  • Math Stack Exchange – Parte della rete Stack Exchange, questo sito è un forum di domande e risposte specificamente dedicato alla matematica. È una delle piattaforme più popolari per discutere e risolvere problemi matematici di vario livello, dall’elementare all’avanzato.






Document









Document