Esercizi diagonalizzazione matrici 6

Autovalori e diagonalizzazione

Home » Esercizi diagonalizzazione matrici 6

Richiamiamo di seguito le definizioni e i risultati fondamentali per la risoluzione degli esercizi.

Definizione 1 (diagonalizzazone).
Una matrice D \in \mathcal{M}_n(\mathbb{R}) si dice diagonale se i suoi elementi al di fuori della diagonale principale sono nulli, ossia se D è della forma

    \begin{equation*} D = \begin{pmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & d_n \end{pmatrix}. \end{equation*}

Una matrice A \in \mathcal{M}_n(\mathbb{R}) si dice diagonalizzabile se esistono una matrice diagonale D \in \mathcal{M}_n(\mathbb{R}) e una matrice P\in \mathcal{M}_n(\mathbb{R}) invertibile tali che

    \begin{equation*} A = P D P^{-1}, \end{equation*}

dove le operazioni sono prodotti righe per colonne di matrici. P si dice matrice diagonalizzante di A e le matrici A e D si dicono simili.

Tale proprietà, come vedremo a breve, è strettamente correlata alle nozioni di autovettore e autovalore della matrice in esame.

Definizione 2 (autovalori e autovettori).
Data una matrice A \in \mathcal{M}_n(\mathbb{R}), un numero reale \lambda si dice autovalore di A se esiste v =(v_1,\dots,v_n) \in \mathbb{R}^n \setminus \{\mathbf{0}\} tale che Av= \lambda v, ossia se

    \begin{equation*} A \begin{pmatrix} v_1 \\ v_2 \\ \vdots\\ v_n \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ v_2 \\ \vdots\\ v_n \end{pmatrix}. \end{equation*}

Un tale v è detto autovettore di A relativo all’autovalore \lambda.

Il prossimo risultato collega le nozioni di autovettori e autovalori alla diagonalizzabilità di una matrice.

Teorema 3.
Per una matrice A \in \mathcal{M}_n(\mathbb{R}) valgono le seguenti proprietà.

  1. Se \lambda è un autovalore di A, l’insieme E(\lambda) costituito dagli autovettori relativi a \lambda e da \mathbf{0} è un sottospazio vettoriale di \mathbb{R}^n, detto autospazio relativo a \lambda. La dimensione di E(\lambda) è detta molteplicità geometrica dell’autovalore \lambda e si indica con \operatorname{mg}(\lambda).
  2. Autovettori relativi ad autovalori distinti sono linearmente indipendenti.
  3. A è diagonalizzabile se e solo se esiste una base \mathcal{B} \coloneqq \{v^1,\dots,v^n\} di \mathbb{R}^n costituita da autovettori di A, detta base diagonalizzante. In tal caso

        \begin{equation*} D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda _2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} \qquad \text{e} \qquad P= \begin{pmatrix} v_1^1 & v_1^2 & \dots & v_1^n \\[3pt] v_2^1 & v_2^2 & \dots & v_2^n \\[3pt] \vdots & \vdots & \ddots & \vdots \\ v_n^1 & v_n^2 & \dots & v_n^n \end{pmatrix}, \end{equation*}

    ovvero le componenti di D sulla diagonale principale sono gli autovalori (non necessariamente distinti) \lambda_i di A e P è la matrice avente, sulla colonna i-esima, le componenti dell’autovettore v^i relativo all’autovalore \lambda_i. P è quindi la matrice di cambiamento tra la base \mathcal{B} e la base canonica.

In particolare, A è diagonalizzabile se e solo se la somma delle dimensioni dei suoi autospazi (cioè la somma delle molteplicità geometriche dei suoi autovalori) è pari a n.

Al fine di stabilire se una matrice A \in \mathcal{M}_n(\mathbb{R}) sia diagonalizzabile, è quindi necessario determinarne gli eventuali autovalori e le dimensioni dei relativi autospazi. Per eseguire tale analisi, è molto utile il seguente risultato, che esplicita un metodo algebrico per il calcolo degli autovettori di una matrice e per stabilire se essa è diagonalizzabile.

Teorema 4.
Sia A \in \mathcal{M}_n(\mathbb{R}) una matrice quadrata.

  1. \lambda è un autovalore di A se e solo se \ker(A - \lambda I) \neq \{\mathbf{0}\}. In particolare, gli autovalori di A sono tutte e sole le radici dell’equazione algebrica nell’incognita \lambda

        \begin{equation*} \det(A - \lambda I)=0. \end{equation*}

    Il polinomio p(\lambda) \coloneqq \det(A - \lambda I) nella variabile \lambda è detto polinomio caratteristico della matrice A.
    La molteplicità di un autovalore \lambda come radice di p(\lambda) è detta molteplicità algebrica di \lambda e si indica con \operatorname{ma}(\lambda).

  2. Se \lambda è un autovalore di A, l’autospazio E(\lambda) coincide con \ker(A- \lambda I) e la sua dimensione è pari a \operatorname{mg}(\lambda). Vale inoltre

    (1)   \begin{equation*} \operatorname{mg}(\lambda) \leq \operatorname{ma}(\lambda). \end{equation*}

  3. A\in \mathcal{M}_n(\mathbb{R}) è diagonalizzabile se e solo se il suo polinomio caratteristico ha n radici reali contate con la loro molteplicità e se per ognuna di queste radici \lambda si ha

        \begin{equation*} \operatorname{ma}(\lambda) = \operatorname{mg}(\lambda). \end{equation*}

    In altre parole A è diagonalizzabile se e solo se esiste una base di \mathbb{R}^n costituita da autovettori di A.

Osservazione 5.
Dai precedenti risultati discendono le seguenti proprietà:

  1. il termine noto del polinomio caratteristico è pari al determinante della matrice A, mentre il termine di grado n-1 è pari a (-1)^{n-1} \operatorname{Tr}(A)=(-1)^{n-1} \sum_{k=1}^n a_{kk};
  2. un vettore v \in \mathbb{R}^n appartiene all’autospazio E(\lambda) se e solo se esso è soluzione del sistema lineare omogeneo

        \begin{equation*} (A-\lambda I)v= \mathbf{0}. \end{equation*}

  3. Se \operatorname{ma}(\lambda)=1, allora anche \operatorname{mg}(\lambda)=1. Ciò è conseguenza di (1) e del fatto che, poiché la matrice A-\lambda I non è invertibile, ha nucleo non banale e quindi \operatorname{mg}(\lambda)\geq 1. In particolare, se A \in \mathcal{M}_n(\mathbb{R}) ha n autovalori distinti, allora A è diagonalizzabile.

Testi degli esercizi

Esercizio 6   (\bigstar\bigstar\bigstar\largewhitestar\largewhitestar).
Sia A \in \mathcal{M}_n(\mathbb{R}) una matrice non nulla e tale che

    \begin{equation*} A^3 + A = \mathbf{0}. \end{equation*}

  1. Provare che il solo autovalore di A è \lambda=0 e dedurne che A non è diagonalizzabile.
  2. La stessa conclusione sarebbe ancora valida se A avesse coefficienti complessi?

Svolgimento

  1. Sia \lambda\in\mathbb{R} un autovalore di A associato all’autovettore v\in \mathbb{R}^n con v\neq \mathbf{0}. Allora A v=\lambda v e, applicando A ad ambo i lati dell’uguaglianza per due volte, abbiamo A^3(v)=\lambda^3 v; tenendo conto di A^3+A=\mathbf{0} si ottiene

        \begin{equation*} \lambda^3 v + \lambda v = \mathbf{0} \implies 0=\lambda^3+\lambda=\lambda(\lambda^2+1), \end{equation*}

    da cui segue che l’unico autovalore reale è \lambda=0.
    Se A fosse diagonalizzabile, dunque, dovrebbe essere nulla ma ciò contraddice l’ipotesi che A \neq \mathbf{0}. Da ciò segue che A non è diagonalizzabile.

  2. La risposta è negativa; infatti

        \begin{equation*} A^3+A= \mathbf{0} \iff A(A^2+I)=\mathbf{0}, \end{equation*}

    che è soddisfatta ad esempio dalle matrici diagonali della forma

        \begin{equation*} A= \begin{pmatrix} \pm i & 0 & \dots & 0 \\ 0 & \pm i & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \pm i \end{pmatrix}, \end{equation*}

    in quanto tali matrici sono tali che A^2=-I.

error: Il contenuto è protetto!!