Scarica gli esercizi svolti
Ottieni il documento contenente 37 esercizi risolti, contenuti in 131 pagine ricche di dettagli, per migliorare la tua comprensione dei moti relativi in meccanica classica.
Esercizio 14 . Dalla sommità di un piano inclinato liscio si lascia libero di muoversi un corpo, con velocità iniziale parallela al piano inclinato, come rappresentato in figura 1. Il blocco che costituisce il piano inclinato si muove verso il basso con accelerazione uguale a quella di gravità. Si determini il moto del corpo rispetto ad un sistema di riferimento solidale con il piano inclinato.
Richiami teorici.
(1)
Nell’equazione (1):
- è la risultante di tutte le forze reali applicate al punto materiale;
- è l’accelerazione del sistema di riferimento non inerziale rispetto ad un sistema di riferimento inerziale;
- , dove la velocità angolare con il quale ruota il sistema di riferimento non inerziale rispetto al sistema di riferimento inerziale e il vettore posizione di rispetto al sistema di riferimento non inerziale;
- è la forza centrifuga, dove ;
- è la forza di Coriolis, dove , essendo la velocità relativa del punto materiale rispetto al sistema di riferimento non inerziale;
- è l’accelerazione relativa di nel sistema di riferimento non inerziale.
In particolare
(2)
Svolgimento.
Il sistema si muove all’unisono con il piano inclinato, pertanto è un sistema di riferimento non inerziale. In questo sistema di riferimento il corpo di massa sarà soggetto ad una forza apparente pari a , poiché l’accelerazione del sistema coincide con l’accelerazione di gravità .
Le forze reali che agiscono sul corpo, nel sistema non inerziale, sono la forza peso e la reazione vincolare esercitata dal piano inclinato su di esso. Le forze sono orientate come in figura 3.
La reazione vincolare è perpendicolare al piano perché per ipotesi non c’è attrito tra esso e il corpo, pertanto ha componente tangenziale nulla. Per il secondo principio della dinamica, nel sistema di riferimento non inerziale, si ha
(3)
dove è l’accelerazione di rispetto al sistema di riferimento . Sia la componente del vettore accelerazione e sia la componente del vettore accelerazione . Proiettando le forze lungo l’asse delle e , dalla precedente equazione, si ottiene
(4)
Abbiamo posto perché nella direzione dell’asse delle non può esserci movimento, per via del vincolo dovuto dal piano inclinato. \ Dai risultati ottenuti, concludiamo che, nel sistema non inerziale il corpo non accelera (), e quindi continua a muoversi di moto rettilineo uniforme con nella direzione positiva dell’asse delle . La sua legge oraria nella direzione dell’asse delle è
(5)
per ogni .
Esercizi di Meccanica classica
Se siete interessati ad approfondire argomenti inerenti alla Meccanica Classica, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.
Leggi..
- Cinematica del punto materiale.
- Dinamica del punto materiale: le leggi di Newton nella meccanica classica.
- Dinamica del punto materiale: lavoro ed energia.
- Moti relativi.
- Sistemi di punti materiali.
- Dinamica del corpo rigido.
- Urti .
- Gravitazione .
- Oscillazioni e onde.
- Meccanica dei fluidi.
- Onde meccaniche.
- Statica in meccanica classica.
- Fondamenti di relatività ristretta: trasformazioni di Lorentz e principali conseguenze.
- Calcolo del centro di massa e dei momenti d’inerzia.
Tutti gli esercizi di elettromagnetismo
Se si desidera proseguire con gli esercizi, di seguito è disponibile una vasta raccolta che copre interamente gli argomenti del programma di
Leggi...
- Esercizi su lavoro elettrico e potenziale elettrico.
- Esercizi sulla legge di Gauss.
- Esercizi sui conduttori, condensatori, dielettrici ed energia elettrostatica.
- Esercizi sulla corrente elettrica.
- Esercizi sul campo magnetico e forza magnetica.
- Esercizi sulle sorgenti di un campo magnetico e legge di Ampere.
- Esercizi su campi elettrici e magnetici variabili nel tempo.
- Esercizi su oscillazione del campo elettrico e correnti alternate.
- Esercizi sulle onde elettromagnetiche.
- Esercizi sulla riflessione e rifrazione della luce.
- Esercizi sull’ ottica geometrica.
- Esercizi sull’ interferenza.
- Esercizi sulla diffrazione.
- Esercizi sulle proprietà corpuscolari e ondulatorie della materia.
Per chi intende verificare le proprie competenze, è stata predisposta una raccolta di esercizi misti di elettromagnetismo.
Esercizi di Meccanica razionale
Se siete interessati ad approfondire argomenti inerenti alla Meccanica razionale, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.
Leggi...