Esercizio lavoro ed energia 28
L’esercizio 28 sul lavoro e l’energia fa parte della raccolta inclusa nella cartella Dinamica del punto materiale: Lavoro ed energia in Meccanica classica. Questo esercizio segue Esercizio lavoro ed energia 27 ed è il precedente di Esercizio lavoro ed energia 29. Questo esercizio è progettato per studenti che frequentano un corso di Fisica 1, indirizzato a chi studia ingegneria, fisica o matematica.
Scarica gli esercizi svolti
Ottieni il documento contenente 82 esercizi risolti, contenuti in 255 pagine ricche di dettagli, per migliorare la tua comprensione del lavoro ed energia in meccanica classica.
Testo lavoro ed energia 28
Esercizio 28 . Un punto materiale di massa poggia su di un piano orizzontale ed è attaccato ad una molla ideale di costante elastica . Inizialmente il corpo ha velocità e la molla è a riposo, come in figura 1. Tra la cassa e la superficie orizzontale di appoggio c’è attrito, con coefficienti di attrito statico e dinamico rispettivamente pari a e . Si determini la relazione che deve esistere tra il modulo della velocità della cassa e le grandezze e affinché la cassa rimanga ferma nella posizione corrispondente al massimo allungamento della molla.
Svolgimento.
Primo metodo.
La cassa, avendo una velocità iniziale di modulo pari a , si allontana dalla posizione di equilibrio, allungando la molla, di una quantità . Costruiamo il diagramma di corpo libero per la cassa come fatto in figura 2. Su di essa agiscono la forza peso , la reazione vincolare , la forza di attrito dinamico (essendo la cassa in movimento) e la forza elastica . Tutte le forze succitate sono rappresentate in figura 2. Dalla seconda equazione della dinamica, proiettando le forze lungo gli assi ed , si ha
(1)
Ricordiamo che la forza di attrito dinamico è , otteniamo
(2)
dove abbiamo sostituito l’espressione di ottenuta dalla seconda equazione del sistema (1). Sostituendo l’espressione di (ottenuta all’equazione (2)) nella prima equazione del sistema (1), si ha
(3)
Abbiamo scritto l’equazione del moto lungo l’asse orizzontale in maniera tale da poter definire la quantità , da cui
(4)
(5)
Sfruttando quanto ottenuto l’equazione (3) diventa
(6)
che è l’equazione di un oscillatore armonico con pulsazione . La soluzione generale dell’equazione (6) è nota ed è pari ad
(7)
con e due parametri da determinare in base alle condizioni iniziali.
Ricordando che , segue che la soluzione dell’equazione (7), scritta in termini della variabile , diventa
(8)
Per determinare i parametri e utilizziamo le condizioni iniziali del problema. La velocità della cassa al generico istante è ottenuta derivando l’equazione (8) rispetto al tempo, ossia
(9)
La cassa all’istante iniziale è nell’origine del sistema di riferimento, ed ha una velocità pari a in modulo, ossia
(10)
Elevando al quadrato entrambe le equazioni del sistema (10) e sommandole membro a membro, si trova
(11)
(12)
Per calcolare l’angolo di fase , dividiamo ciascun membro della prima equazione del sistema (10) per i corrispondenti membri della seconda equazione, per cui
(13)
dove nell’ultimo passaggio abbiamo utilizzato il fatto che . Ovviamente perché se vorrebbe dire che e questo andrebbe contro le condizioni iniziale del problema, in quanto la velocità iniziale non è vero. Se sostituiamo l’espressione dell’ampiezza e della fase , calcolate nelle equazioni (12) e (13), rispettivamente, nella legge oraria della cassa data dall’equazione (8), abbiamo che
(14)
È noto che
(15)
(16)
Raggiunta l’elongazione massima , essendo un moto armonico, il corpo si ferma. Pertanto scrivendo la seconda legge della dinamica in corrispondenza di questa configurazione (si veda il sistema (1)) si ha
(17)
dove rappresenta il modulo della forza di attrito statico, mentre il modulo della forza elastica in corrispondenza della massima elongazione. Ricordiamo che in generale la forza di attrito statico è tale che
(18)
Dunque affinché il corpo resti in equilibrio dinamico è necessario che
(19)
Sostituendo l’espressione di , calcolata nell’equazione (16), nella condizione data dall’equazione (19) si trova
(20)
Il primo ed il secondo membro della disequazione (20) sono quantità positive (quindi possiamo elevare al quadrato ambo i membri), per cui elevando al quadrato ambo i membri della disequazione, si ottiene
Si conclude che la relazione cercata è
Secondo metodo.
(21)
dove abbiamo assunto che la velocità finale del corpo sia nulla in corrispondenza della massima elongazione, essendo un moto armonico; è il lavoro fatto dalla forza di attrito dinamico e è il lavoro compiuto dalla molla nel tratto . L’equazione (21) diventa
(22)
Risolvendo l’equazione di secondo grado (22) rispetto alla incognita si ha
dove abbiamo preso la soluzione con il segno perchè si deve determinare la massima elongazione rispetto alla posizione di equilibrio (vedi Approfondimento). Osserviamo che l’espressione di appena ottenuta coincide con il risultato ottenuto all’equazione (16) nel primo metodo. Dopodiché il procedimento segue esattamente gli stessi passaggi visti già nel primo metodo.
Approfondimento.
(23)
(24)
dove abbiamo posto È immediato notare che , e ciò sembrerebbe contraddire l’aver identificato come la massima elongazione. Per ovviare a questo apparente paradosso, ricordiamo che in un moto armonico il corpo oscilla intorno alla posizione di equilibrio. Calcoliamo quindi la coordinata della posizione di equilibrio , imponendo
(25)
Quindi sostituendo il valore di appena ottenuto nelle espressioni di e di (equazioni (23) e (24)), si ha
(26)
e
(27)
Quindi effettivamente per come è stata definita rappresenta la massima elongazione della molla rispetto alla posizione di equilibrio mentre ne rappresenta la sua massima compressione, come illustrato anche in figura 3.
Esercizi di Meccanica classica
Se siete interessati ad approfondire argomenti inerenti alla Meccanica Classica, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.
Leggi..
- Cinematica del punto materiale.
- Dinamica del punto materiale: le leggi di Newton nella meccanica classica.
- Dinamica del punto materiale: lavoro ed energia.
- Moti relativi.
- Sistemi di punti materiali.
- Dinamica del corpo rigido.
- Urti .
- Gravitazione .
- Oscillazioni e onde.
- Meccanica dei fluidi.
- Onde meccaniche.
- Statica in meccanica classica.
- Fondamenti di relatività ristretta: trasformazioni di Lorentz e principali conseguenze.
- Calcolo del centro di massa e dei momenti d’inerzia.
Tutti gli esercizi di elettromagnetismo
Se si desidera proseguire con gli esercizi, di seguito è disponibile una vasta raccolta che copre interamente gli argomenti del programma di
Leggi...
- Esercizi su lavoro elettrico e potenziale elettrico.
- Esercizi sulla legge di Gauss.
- Esercizi sui conduttori, condensatori, dielettrici ed energia elettrostatica.
- Esercizi sulla corrente elettrica.
- Esercizi sul campo magnetico e forza magnetica.
- Esercizi sulle sorgenti di un campo magnetico e legge di Ampere.
- Esercizi su campi elettrici e magnetici variabili nel tempo.
- Esercizi su oscillazione del campo elettrico e correnti alternate.
- Esercizi sulle onde elettromagnetiche.
- Esercizi sulla riflessione e rifrazione della luce.
- Esercizi sull’ ottica geometrica.
- Esercizi sull’ interferenza.
- Esercizi sulla diffrazione.
- Esercizi sulle proprietà corpuscolari e ondulatorie della materia.
Per chi intende verificare le proprie competenze, è stata predisposta una raccolta di esercizi misti di elettromagnetismo.
Esercizi di Meccanica razionale
Se siete interessati ad approfondire argomenti inerenti alla Meccanica razionale, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.
Leggi...
Ulteriori risorse didattiche per la fisica
Leggi...
- Physics Stack Exchange – Parte della rete Stack Exchange, questo sito è un forum di domande e risposte specificamente dedicato alla fisica. È un’ottima risorsa per discutere e risolvere problemi di fisica a tutti i livelli, dall’elementare all’avanzato.
- ArXiv – ArXiv è un archivio di preprint per articoli di ricerca in fisica (e in altre discipline scientifiche). Gli articoli non sono peer-reviewed al momento della pubblicazione su ArXiv, ma rappresentano un’importante risorsa per rimanere aggiornati sugli sviluppi più recenti nella ricerca fisica.
- Phys.org – Questo sito offre notizie e aggiornamenti su una vasta gamma di argomenti scientifici, con un focus particolare sulla fisica. È una risorsa utile per rimanere aggiornati sugli ultimi sviluppi nella ricerca e nelle scoperte fisiche.
- Physics Forums – Una delle comunità online più grandi per la fisica e la scienza in generale. Offre discussioni su vari argomenti di fisica, aiuto con i compiti, e discussioni su articoli di ricerca.
- The Feynman Lectures on Physics – Questo sito offre accesso gratuito alla famosa serie di lezioni di fisica di Richard Feynman, un’ottima risorsa per studenti di fisica di tutti i livelli.
- American Physical Society (APS) – La APS è una delle organizzazioni più importanti per i fisici. Il sito offre accesso a pubblicazioni, conferenze, risorse educative e aggiornamenti sulle novità del mondo della fisica.
- Institute of Physics (IOP) – L’IOP è un’importante organizzazione professionale per i fisici. Il sito offre risorse per l’apprendimento, accesso a riviste scientifiche, notizie e informazioni su eventi e conferenze nel mondo della fisica.
- Physics World – Physics World è una rivista online che offre notizie, articoli, interviste e approfondimenti su vari argomenti di fisica. È una risorsa preziosa per chiunque sia interessato agli sviluppi contemporanei nella fisica.
- Quanta Magazine (sezione Fisica) – Quanta Magazine è una pubblicazione online che copre notizie e articoli di approfondimento su matematica e scienze. La sezione fisica è particolarmente interessante per i contenuti di alta qualità e le spiegazioni approfondite.
- Perimeter Institute – Il Perimeter Institute è un importante centro di ricerca in fisica teorica. Il sito offre accesso a conferenze, workshop e materiale educativo, ed è un’ottima risorsa per chi è interessato alla fisica teorica avanzata.
Lavoro ed energia nelle energie rinnovabili: fondamenti per un futuro sostenibile
Leggi...
Il concetto di lavoro in fisica si riferisce al trasferimento di energia attraverso l’applicazione di una forza su un corpo che si muove nella direzione della forza stessa. In termini di energia rinnovabile, il lavoro viene svolto ogni volta che una fonte naturale di energia, come il vento, il sole, o l’acqua, viene convertita in una forma di energia utilizzabile, come l’elettricità. Ad esempio, nelle turbine eoliche, il lavoro è compiuto dal vento che esercita una forza sulle pale, facendole ruotare. Questa rotazione viene convertita in energia elettrica attraverso un generatore. Il vento compie lavoro sulle pale, trasferendo loro l’energia cinetica necessaria per generare elettricità. Nei pannelli fotovoltaici, i fotoni provenienti dal sole “spingono” gli elettroni attraverso un semiconduttore, generando corrente elettrica. Anche se il concetto di lavoro qui è meno intuitivo rispetto all’eolico, l’energia solare svolge un lavoro fondamentale nel liberare gli elettroni necessari per produrre energia. Nelle centrali idroelettriche, l’acqua che cade da un’altezza compie lavoro sulle turbine situate alla base delle dighe. Questo lavoro, dovuto all’energia potenziale dell’acqua, viene trasformato in energia cinetica e infine in energia elettrica.
L’energia è la capacità di un sistema di compiere lavoro. Nelle energie rinnovabili, la sfida principale è catturare e convertire l’energia disponibile nell’ambiente in una forma utilizzabile. Le principali forme di energia coinvolte nelle tecnologie rinnovabili includono l’energia cinetica, come quella del vento e dell’acqua in movimento, che può essere convertita direttamente in energia elettrica, l’energia solare, che può essere convertita in energia elettrica attraverso pannelli fotovoltaici o utilizzata per riscaldare fluidi in impianti solari termici, e l’energia potenziale, come l’energia immagazzinata nell’acqua dietro una diga, che può essere rilasciata per generare energia elettrica.
Uno degli obiettivi principali nello sviluppo delle tecnologie rinnovabili è migliorare l’efficienza con cui queste tecnologie convertono l’energia disponibile in energia utilizzabile. L’efficienza è spesso definita come il rapporto tra l’energia prodotta e l’energia disponibile, e può essere limitata da vari fattori, tra cui le perdite energetiche sotto forma di calore e l’inefficienza dei componenti meccanici ed elettrici. La sostenibilità delle energie rinnovabili non dipende solo dall’efficienza, ma anche dalla capacità di queste tecnologie di ridurre l’impatto ambientale rispetto alle fonti fossili. A differenza del carbone, del petrolio e del gas naturale, le fonti rinnovabili non emettono direttamente gas serra durante la produzione di energia e possono essere sfruttate in modo continuo senza esaurirsi nel tempo.
Mentre il mondo si sposta verso un futuro più sostenibile, l’importanza delle energie rinnovabili continuerà a crescere. Gli sviluppi tecnologici stanno rendendo queste fonti di energia sempre più competitive rispetto alle fonti tradizionali, riducendo i costi e migliorando l’affidabilità. Con il continuo progresso nella scienza dei materiali e nelle tecnologie di stoccaggio dell’energia, le energie rinnovabili sono destinate a svolgere un ruolo centrale nel soddisfare le esigenze energetiche globali, contribuendo al contempo a mitigare il cambiamento climatico. In conclusione, il concetto di lavoro ed energia è intrinsecamente legato alle energie rinnovabili, fornendo una base per comprendere come queste tecnologie catturano e trasformano le risorse naturali in energia utilizzabile. Con l’aumento della consapevolezza ambientale e la pressione per ridurre le emissioni di carbonio, le energie rinnovabili rappresentano non solo una soluzione necessaria, ma anche una strada percorribile verso un futuro energetico sostenibile.
Lavoro ed energia: l’evoluzione storica e scientifica di due concetti fondamentali della fisica
Leggi...
Il concetto di energia ha una storia più lunga e complessa. L’idea che il movimento e le forze potessero essere legate a una sorta di “capacità di compiere lavoro” risale all’antichità, ma il concetto moderno di energia iniziò a prendere forma solo nel XVII secolo. Un passo importante fu fatto con i lavori di Gottfried Wilhelm Leibniz e Émilie du Châtelet nel XVII e XVIII secolo. Leibniz sviluppò il concetto di vis viva (forza viva), che corrisponde all’energia cinetica moderna, come il prodotto della massa di un corpo e del quadrato della sua velocità. Questo concetto fu ulteriormente sviluppato da Émilie du Châtelet, che chiarì il ruolo dell’energia potenziale, contribuendo a formare la base del principio di conservazione dell’energia.
Nel XIX secolo, scienziati come Joule, Helmholtz, e Thomson (Lord Kelvin) consolidarono il concetto di energia come quantità fisica conservata. Joule, in particolare, dimostrò l’equivalenza tra lavoro meccanico e calore, stabilendo il principio di conservazione dell’energia, noto come la prima legge della termodinamica.
La formalizzazione del lavoro e dell’energia come concetti interconnessi permise agli scienziati di sviluppare una comprensione più profonda dei processi fisici. In meccanica classica, il lavoro svolto su un sistema è strettamente legato alle variazioni di energia del sistema, e questa comprensione è alla base di molte applicazioni in ingegneria e fisica. Nel tempo, questi concetti sono diventati fondamentali non solo nella meccanica, ma anche in altre branche della fisica, come la termodinamica e l’elettromagnetismo, fornendo un linguaggio comune per descrivere e analizzare un’ampia gamma di fenomeni naturali.