a

Menu

M

Chiudi

Home » Esercizio lavoro ed energia 26

L’esercizio 26 sul lavoro e l’energia fa parte della raccolta inclusa nella cartella Dinamica del punto materiale: Lavoro ed energia in Meccanica classica. Questo esercizio segue Esercizio lavoro ed energia 25 ed è il precedente di Esercizio lavoro ed energia 27. Questo esercizio è progettato per studenti che frequentano un corso di Fisica 1, indirizzato a chi studia ingegneria, fisica o matematica.

 

Testo lavoro ed energia 26

Esercizio 26  (\bigstar \bigstar \largewhitestar \largewhitestar\largewhitestar). Un punto materiale di massa m scende lungo un piano inclinato liscio. Alla fine del piano inclinato scorre su un tratto orizzontale scabro, con coefficiente di attrito dinamica \mu, andando ad urtare una molla, di massa trascurabile e costante elastica k fissata ad un vincolo verticale; il piano inclinato è fatto in modo tale da raccordare la fine di esso con il piano orizzontale in modo che si conservi l’energia. La molla ha una lunghezza a riposo \ell_0 e una costante elastica k. La distanza tra la fine del piano inclinato e il vincolo è d. Se il punto all’istante iniziale è fermo, determinare l’altezza h da cui deve scendere affinché, dopo aver urtato la molla, possa toccare la parete del vincolo. Si supponga che nell’urto tra molla e punto si conservi l’energia, e che nella parte in cui è presente la molla non ci sia attrito.

 

 

Rendered by QuickLaTeX.com

 

Figura 1.

 
 

Svolgimento.

Scegliamo un sistema di riferimento fisso Oxy in modo che l’asse delle x coincida con la base del piano inclinato, Nonché con il piano orizzontale. Inoltre, assumiamo che l’energia potenziale gravitazionale sia nulla alla base del piano orizzontale. Nella figura 2A viene rappresentata la massa m all’istante iniziale, nella figura 2B viene rappresenta la massa m alla fine del piano inclinato, nella figura 2C viene rappresentata la massa m urtare la molla quando è a riposo, e infine nella figura 2D viene rappresenta la massa m nell’istante in cui si comprime totalmente la molla per poi fermarsi.

 

Rendered by QuickLaTeX.com

 

Figura 2: Punti principali del percorso effettuato dalla massa \displaystyle m.

Lavoro ed energia: Sistema di riferimento Oxy con rappresentazione dei punti principali del percorso effettuato dalla massa m in diverse fasi, come illustrato nella figura 2A, 2B, 2C e 2D.

 

 

La massa in esame inizia il suo percorso all’altezza h indicata al punto A; scivola poi senza attrito lungo il piano inclinato raggiungendo la base del piano inclinato (punto B) e prosegue il suo moto lungo il piano scabro fino a raggiungere la molla (punto C), che ha inizialmente la sua lunghezza a riposo \ell_0 e viene compressa di una lunghezza \Delta \ell (punto D). Nel problema in esame, in particolare, viene esplicitato che la massa arrivi a toccare la parete del vincolo, ossia la molla viene compressa totalmente, e dunque \Delta \ell = \ell_0. Per risolvere il problema, applichiamo il teorema delle forze vive: la variazione di energia cinetica \Delta K tra il punto A e il punto D è uguale alla somma dei lavori, dovuti alle varie forze che esamineremo a breve, esercitati sulla massa durante il percorso. Scriveremo tale teorema come

(1)   \begin{equation*} \Delta K_{AD}=L_{AD}, \end{equation*}

dove L_{AD} è qui rappresentativo della somma dei lavori di tutte le forze esercitate sulla massa nel suo percorso dalla configurazione A alla configurazione D. Determiniamo pertanto quali sono le forze in gioco, considerando le varie fasi della traiettoria:

  • AB: Nel passaggio dal punto A al punto B, l’unica forza che compie lavoro è la forza peso \vec{F}_p=m\vec{g}. Poiché è nota la variazione di altezza h che si verifica tra A e B, il lavoro si potrà determinare in accordo con

    (2)   \begin{equation*} L_{AB}=mgh; \end{equation*}

  • BC: Una volta raggiunto il suolo, la forza peso cessa di compiere lavoro sulla massa. La massa m si muove adesso lungo il piano orizzontale scabro, pertanto andremo a considerare il lavoro effettuato dalla forza d’attrito radente dinamico \vec{F}_{att}=-\mu mg\,\hat{x}, dove \hat{x} è il versore dell’asse delle x; poiché è nota la distanza d percorsa tra B e C, possiamo determinare il lavoro effettuato come

    (3)   \begin{equation*} L_{BC}=\vec{F}_{att}\cdot\vec{d}=-\mu mg\,\hat{x}\cdot d\,\hat{x}=- \mu mg d, \end{equation*}

    dove è importante osservare che la forza d’attrito ha verso opposto rispetto allo spostamento effettuato, e pertanto il prodotto scalare produce il segno negativo presente nel risultato finale.

  • CD: Una volta raggiunta la molla, questa si comprime fino a che la massa m non raggiunge la parete. Poiché questo spostamento, che corrisponde alla compressione della molla, avviene lungo un tratto di piano liscio, l’unica forza che compie lavoro sul punto materiale è la forza della molla \vec{F}_{\text{Molla}}. Il lavoro della molla è

    (4)   \begin{equation*} L_{CD}=\dfrac{1}{2}k\left(\left(\Delta \ell_i\right) -\left(\Delta \ell_f\right)^2\right), \end{equation*}

    dove \Delta \ell_i è la compressione/allungamento iniziale della molla e \Delta \ell_f è la compressione/allungamento finale della molla. Nel nostro caso abbiamo \Delta \ell_i=0 e \Delta \ell_f=\ell_0, da cui, si ottiene

    (5)   \begin{equation*} L_{CD}=\dfrac{1}{2}k\left(\left(\Delta \ell_i\right) -\left(\Delta \ell_f\right)^2\right)=-\dfrac{1}{2}k\ell_0^2. \end{equation*}

    Si osservi che la molla viene compressa totalmente dalla massa m, e pertanto lo spazio percorso coincide con l’intera lunghezza a riposo della molla.

Sostituiamo adesso quanto ricavato nell’eq.(1), osservando in particolare che K_{AD}=0, poiché il corpo parte da fermo e termina il suo percorso fermo:

(6)   \begin{equation*} 0=L_{AD}=L_{AB}+L_{BC}+L_{CD}, \end{equation*}

e dunque

(7)   \begin{equation*} 0=mgh- \mu mg d-\frac{1}{2}k\ell_0^2. \end{equation*}

Spostando il termine mgh al primo membro e cambiando di segno, avremo

(8)   \begin{equation*} mgh=\mu mg d+\frac{1}{2}k\ell_0^2, \end{equation*}

ed ancora, dividendo tutto per mg, avremo un’espressione esplicita per h:

    \[\boxcolorato{fisica}{ h=\mu d+\frac{k\ell_0^2}{2mg},}\]

che rappresenta il risultato richiesto dal problema.

 

 

Scarica gli esercizi svolti

Ottieni il documento contenente 82 esercizi risolti, contenuti in 255 pagine ricche di dettagli, per migliorare la tua comprensione del lavoro ed energia in meccanica classica.

 
 

Esercizi di Meccanica classica

Se siete interessati ad approfondire argomenti inerenti alla Meccanica Classica, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.


 
 

Tutti gli esercizi di elettromagnetismo

Se si desidera proseguire con gli esercizi, di seguito è disponibile una vasta raccolta che copre interamente gli argomenti del programma di

  • Elettromagnetismo. Questa raccolta include spiegazioni dettagliate e gli esercizi sono organizzati in base al livello di difficoltà, offrendo un supporto completo per lo studio e la pratica.

     
     

    Esercizi di Meccanica razionale

    Se siete interessati ad approfondire argomenti inerenti alla Meccanica razionale, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.


     
     

    Ulteriori risorse didattiche per la fisica

    Leggi...

    • Physics Stack Exchange – Parte della rete Stack Exchange, questo sito è un forum di domande e risposte specificamente dedicato alla fisica. È un’ottima risorsa per discutere e risolvere problemi di fisica a tutti i livelli, dall’elementare all’avanzato.
    • ArXiv – ArXiv è un archivio di preprint per articoli di ricerca in fisica (e in altre discipline scientifiche). Gli articoli non sono peer-reviewed al momento della pubblicazione su ArXiv, ma rappresentano un’importante risorsa per rimanere aggiornati sugli sviluppi più recenti nella ricerca fisica.
    • Phys.org – Questo sito offre notizie e aggiornamenti su una vasta gamma di argomenti scientifici, con un focus particolare sulla fisica. È una risorsa utile per rimanere aggiornati sugli ultimi sviluppi nella ricerca e nelle scoperte fisiche.
    • Physics Forums – Una delle comunità online più grandi per la fisica e la scienza in generale. Offre discussioni su vari argomenti di fisica, aiuto con i compiti, e discussioni su articoli di ricerca.
    • The Feynman Lectures on Physics – Questo sito offre accesso gratuito alla famosa serie di lezioni di fisica di Richard Feynman, un’ottima risorsa per studenti di fisica di tutti i livelli.
    • American Physical Society (APS) – La APS è una delle organizzazioni più importanti per i fisici. Il sito offre accesso a pubblicazioni, conferenze, risorse educative e aggiornamenti sulle novità del mondo della fisica.
    • Institute of Physics (IOP) – L’IOP è un’importante organizzazione professionale per i fisici. Il sito offre risorse per l’apprendimento, accesso a riviste scientifiche, notizie e informazioni su eventi e conferenze nel mondo della fisica.
    • Physics World – Physics World è una rivista online che offre notizie, articoli, interviste e approfondimenti su vari argomenti di fisica. È una risorsa preziosa per chiunque sia interessato agli sviluppi contemporanei nella fisica.
    • Quanta Magazine (sezione Fisica) – Quanta Magazine è una pubblicazione online che copre notizie e articoli di approfondimento su matematica e scienze. La sezione fisica è particolarmente interessante per i contenuti di alta qualità e le spiegazioni approfondite.
    • Perimeter Institute – Il Perimeter Institute è un importante centro di ricerca in fisica teorica. Il sito offre accesso a conferenze, workshop e materiale educativo, ed è un’ottima risorsa per chi è interessato alla fisica teorica avanzata.

     
     

    Lavoro ed energia nelle energie rinnovabili: fondamenti per un futuro sostenibile

    Leggi...

    L’energia è un concetto fondamentale che pervade tutti gli aspetti della vita moderna, dall’alimentazione delle abitazioni e delle industrie, alla mobilità e alla comunicazione globale. Con l’emergere delle preoccupazioni legate al cambiamento climatico e all’esaurimento delle risorse fossili, le energie rinnovabili sono diventate un tema centrale nella ricerca di soluzioni sostenibili per il futuro energetico del pianeta. Questo articolo esplora i concetti di lavoro ed energia nell’ambito delle energie rinnovabili, evidenziando il loro ruolo cruciale nella transizione verso una produzione energetica più pulita e sostenibile.

    Il concetto di lavoro in fisica si riferisce al trasferimento di energia attraverso l’applicazione di una forza su un corpo che si muove nella direzione della forza stessa. In termini di energia rinnovabile, il lavoro viene svolto ogni volta che una fonte naturale di energia, come il vento, il sole, o l’acqua, viene convertita in una forma di energia utilizzabile, come l’elettricità. Ad esempio, nelle turbine eoliche, il lavoro è compiuto dal vento che esercita una forza sulle pale, facendole ruotare. Questa rotazione viene convertita in energia elettrica attraverso un generatore. Il vento compie lavoro sulle pale, trasferendo loro l’energia cinetica necessaria per generare elettricità. Nei pannelli fotovoltaici, i fotoni provenienti dal sole “spingono” gli elettroni attraverso un semiconduttore, generando corrente elettrica. Anche se il concetto di lavoro qui è meno intuitivo rispetto all’eolico, l’energia solare svolge un lavoro fondamentale nel liberare gli elettroni necessari per produrre energia. Nelle centrali idroelettriche, l’acqua che cade da un’altezza compie lavoro sulle turbine situate alla base delle dighe. Questo lavoro, dovuto all’energia potenziale dell’acqua, viene trasformato in energia cinetica e infine in energia elettrica.

    L’energia è la capacità di un sistema di compiere lavoro. Nelle energie rinnovabili, la sfida principale è catturare e convertire l’energia disponibile nell’ambiente in una forma utilizzabile. Le principali forme di energia coinvolte nelle tecnologie rinnovabili includono l’energia cinetica, come quella del vento e dell’acqua in movimento, che può essere convertita direttamente in energia elettrica, l’energia solare, che può essere convertita in energia elettrica attraverso pannelli fotovoltaici o utilizzata per riscaldare fluidi in impianti solari termici, e l’energia potenziale, come l’energia immagazzinata nell’acqua dietro una diga, che può essere rilasciata per generare energia elettrica.

    Uno degli obiettivi principali nello sviluppo delle tecnologie rinnovabili è migliorare l’efficienza con cui queste tecnologie convertono l’energia disponibile in energia utilizzabile. L’efficienza è spesso definita come il rapporto tra l’energia prodotta e l’energia disponibile, e può essere limitata da vari fattori, tra cui le perdite energetiche sotto forma di calore e l’inefficienza dei componenti meccanici ed elettrici. La sostenibilità delle energie rinnovabili non dipende solo dall’efficienza, ma anche dalla capacità di queste tecnologie di ridurre l’impatto ambientale rispetto alle fonti fossili. A differenza del carbone, del petrolio e del gas naturale, le fonti rinnovabili non emettono direttamente gas serra durante la produzione di energia e possono essere sfruttate in modo continuo senza esaurirsi nel tempo.

    Mentre il mondo si sposta verso un futuro più sostenibile, l’importanza delle energie rinnovabili continuerà a crescere. Gli sviluppi tecnologici stanno rendendo queste fonti di energia sempre più competitive rispetto alle fonti tradizionali, riducendo i costi e migliorando l’affidabilità. Con il continuo progresso nella scienza dei materiali e nelle tecnologie di stoccaggio dell’energia, le energie rinnovabili sono destinate a svolgere un ruolo centrale nel soddisfare le esigenze energetiche globali, contribuendo al contempo a mitigare il cambiamento climatico. In conclusione, il concetto di lavoro ed energia è intrinsecamente legato alle energie rinnovabili, fornendo una base per comprendere come queste tecnologie catturano e trasformano le risorse naturali in energia utilizzabile. Con l’aumento della consapevolezza ambientale e la pressione per ridurre le emissioni di carbonio, le energie rinnovabili rappresentano non solo una soluzione necessaria, ma anche una strada percorribile verso un futuro energetico sostenibile.


     

    Lavoro ed energia: l’evoluzione storica e scientifica di due concetti fondamentali della fisica

    Leggi...

    Il concetto di lavoro ed energia ha radici profonde nella storia della fisica e della filosofia naturale, evolvendosi attraverso secoli di osservazioni e teorie che hanno cercato di spiegare il funzionamento del mondo naturale. Il concetto di lavoro in fisica, come misura del trasferimento di energia attraverso l’applicazione di una forza, è relativamente recente nella storia della scienza, risalente al XVIII secolo. Prima di questo periodo, i filosofi naturali, come Aristotele, avevano concetti più rudimentali di movimento e forza, senza una chiara distinzione tra energia e lavoro. Il termine “lavoro” in senso fisico fu formalmente introdotto dal matematico francese Gaspard-Gustave Coriolis nel 1829. Coriolis definì il lavoro come il prodotto della forza applicata su un corpo e dello spostamento del corpo nella direzione della forza. Questa definizione permise di quantificare il lavoro meccanico e divenne un concetto fondamentale nella meccanica classica.

    Il concetto di energia ha una storia più lunga e complessa. L’idea che il movimento e le forze potessero essere legate a una sorta di “capacità di compiere lavoro” risale all’antichità, ma il concetto moderno di energia iniziò a prendere forma solo nel XVII secolo. Un passo importante fu fatto con i lavori di Gottfried Wilhelm Leibniz e Émilie du Châtelet nel XVII e XVIII secolo. Leibniz sviluppò il concetto di vis viva (forza viva), che corrisponde all’energia cinetica moderna, come il prodotto della massa di un corpo e del quadrato della sua velocità. Questo concetto fu ulteriormente sviluppato da Émilie du Châtelet, che chiarì il ruolo dell’energia potenziale, contribuendo a formare la base del principio di conservazione dell’energia.

    Nel XIX secolo, scienziati come Joule, Helmholtz, e Thomson (Lord Kelvin) consolidarono il concetto di energia come quantità fisica conservata. Joule, in particolare, dimostrò l’equivalenza tra lavoro meccanico e calore, stabilendo il principio di conservazione dell’energia, noto come la prima legge della termodinamica.

    La formalizzazione del lavoro e dell’energia come concetti interconnessi permise agli scienziati di sviluppare una comprensione più profonda dei processi fisici. In meccanica classica, il lavoro svolto su un sistema è strettamente legato alle variazioni di energia del sistema, e questa comprensione è alla base di molte applicazioni in ingegneria e fisica. Nel tempo, questi concetti sono diventati fondamentali non solo nella meccanica, ma anche in altre branche della fisica, come la termodinamica e l’elettromagnetismo, fornendo un linguaggio comune per descrivere e analizzare un’ampia gamma di fenomeni naturali.






    Document