M

Chiudi

Esercizio sul momento di inerzia – 5

Calcolo del centro di massa e dei momenti d'inerzia

Home » Esercizio sul momento di inerzia – 5

Esercizio sul momento di inerzia – 5

In questo quinto articolo della raccolta di esercizi sul momento di inerzia presentiamo il calcolo del momento di inerzia di un’asta sottile. Segnaliamo anche il precedente esercizio sul momento di inerzia – 4 sul calcolo del momento di inerzia di una sfera piena e il successivo esercizio sul momento di inerzia – 6 per il calcolo del momento di inerzia di un ellissoide.

 

Testo dell’esercizio

Esercizio 5  (\bigstar\largewhitestar\largewhitestar\largewhitestar\largewhitestar).

Calcolare il momento d’inerzia di un’asta sottile, di lunghezza d, rispetto ad un asse passante per il suo centro di massa e perpendicolare ad essa, ipotizzando che la massa sia distribuita in modo omogeneo rispetto al proprio centro di massa.

 
Richiamiamo brevemente i principali risultati teorici utilizzati nell’esercizio.

Richiami teorici.

Il momento d’inerzia è la misura quantitativa dell’inerzia rotazionale di un corpo, ossia la resistenza che un corpo oppone a un’alterazione della propria velocità rotazionale ad opera di un momento esterno. Ciò è evidente nella legge della dinamica rotazionale

(1)   \begin{equation*} \vec{M}^{\text{ext}}=I \vec{\alpha}, \end{equation*}

dove \vec{M}^{\text{ext}} è il momento risultante delle forze esterne applicate al corpo, rispetto a un asse fissato, e \vec{\alpha} è l’accelerazione angolare del corpo considerato rispetto allo stesso asse. Il ruolo di I è quindi molto simile a quello della massa nella seconda legge della dinamica (la resistenza che un corpo oppone ad un’alterazione della propria velocità lineare)

(2)   \begin{equation*} \vec{F}=m\vec{a}, \end{equation*}

dove \vec{F} è la forza risultante applicata al corpo, e \vec{a} è la sua accelerazione. Il momento d’inerzia di un sistema di punti materiali rispetto ad un asse fissato è dato da

(3)   \begin{equation*} I=\sum^N_{i=1}m_ir^2_i, \end{equation*}

dove m_i e r_i rappresentano rispettivamente la massa e la distanza dall’asse di rotazione dell’i-esimo punto materiale. È importante considerare che il momento d’inerzia dipende dalle distanze dall’asse di rotazione, ed al variare dell’asse rispetto a cui lo si calcola, anch’esso varia. Per un corpo solido relativo ad un dominio D \subset \mathbb{R} avente densità \delta \colon D \rightarrow [0,+\infty), e dato un asse \sigma \subset \mathbb{R}, il momento d’inerzia di D rispetto a \sigma è pari a

(4)   \begin{equation*} I= \int_D \delta(x,y,z) r^2_\sigma (x,y,z)\  \mathrm{d}x\ \mathrm{d}y\ \mathrm{d}z, \end{equation*}

dove r^2_\sigma (x,y,z) è il quadrato della distanza del punto (x,y,z) dall’asse \sigma. Se il corpo è costituito da un oggetto sottile assimilabile a un dominio di un piano oppure a una curva, l’integrale precedente viene convenientemente scritto come un integrale di superficie o curvilineo, scegliendo un’opportuna parametrizzazione della stessa. In questo esercizio si renderà necessario calcolare il centro di massa delle figure considerate. Ricordiamo che, mentre per un sistema di n punti materiali aventi posizioni \vec{r}_i e masse m_i il centro di massa risulta essere determinato da

(5)   \begin{equation*} \vec{r}_{\text{cm}}=\frac{\sum^n_{i=1}m_i \vec{r}_i}{\sum^n_{i=1}m_i}, \end{equation*}

per un corpo solido descritto come un dominio D \subset \mathbb{R}^3 avente densità volumica \delta \colon D \rightarrow [0, + \infty), le coordinate del centro di massa si ottengono con le versioni integrali di tali relazioni:

(6)   \begin{equation*} x_{\text{cm}}= \frac{1}{m} \iiint_D x \delta (x,y,z)\, \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}z =  \frac{\iiint_D x \delta(x,y,z)\, \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}z }{\iiint_D\delta(x,y,z)\, \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}z }, \end{equation*}

(7)   \begin{equation*} y_{\text{cm}}= \frac{1}{m} \iiint_D y \delta (x,y,z)\, \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}z =  \frac{\iiint_D y \delta(x,y,z)\, \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}z }{\iiint_D\delta(x,y,z)\, \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}z }, \end{equation*}

(8)   \begin{equation*} z_{\text{cm}}= \frac{1}{m} \iiint_D z \delta (x,y,z)\, \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}z =  \frac{\iiint_D z \delta(x,y,z)\, \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}z }{\iiint_D\delta(x,y,z)\, \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}z }, \end{equation*}

dove con m=\iiint_D \delta(x,y,z)\, \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}z si è indicata la massa totale del corpo D. Nel caso in cui il corpo è supposto omogeneo, ossia in cui \delta è una funzione costante, essa si semplifica dal calcolo e le formule risultanti coinvolgono soltanto le proprietà geometriche di D, senza alcun riferimento alla sua massa.


Possiamo ora presentare lo svolgimento dell’esercizio.

Svolgimento.

Rendered by QuickLaTeX.com

Figura 5: rappresentazione dell’asta di lunghezza d.

  Introduciamo un conveniente sistema di riferimento fisso Oxyz con origine sul centro di massa dell’asta, in modo che l’asta giaccia lungo l’asse delle y, come in figura 5; l’asse rispetto a cui si vuole calcolare il momento di inerzia è, per simmetria, una retta qualsiasi del piano xz passante per l’origine, e quindi si può scegliere l’asse z. Nell’ipotesi di massa distribuita in modo omogeneo, si ha che la densità lineare \lambda può essere espressa come

(9)   \begin{equation*} \lambda = \dfrac{m}{d}. \end{equation*}

Il momento d’inerzia dell’asta sarà dato da

(10)   \begin{equation*} I= \int_\gamma \lambda(\ell) r^2(\ell) \, \mathrm{d}\ell = \frac{m}{d} \int_\gamma r^2(\ell) \mathrm{d}\ell, \end{equation*}

dove \gamma è la curva che descrive l’asta e r(\ell) è la distanza dell’elemento \gamma(\ell) dall’asse z. Una possibile parametrizzazione di \gamma è quella che segue

    \[\vec{\gamma}(y) = (0,y,0), \qquad \mbox{con } y \in \left[-\frac{d}{2}, \frac{d}{2} \right].\]

Il momento d’inerzia è dunque un integrale di linea di prima specie

    \[\begin{aligned} I & = \frac{m}{d} \int_\gamma r^2(\ell) \mathrm{d}\ell =\frac{m}{d} \int_{-\frac{d}{2}}^{\frac{d}{2}} y^2 \; \mathrm{d}y = \frac{m}{d} \left[\dfrac{y^3}{3}\right]_{-\frac{d}{2}}^{\frac{d}{2}} =  \dfrac{m}{3d}\dfrac{d^3}{8} \, 2. \end{aligned}\]

Semplificando avremo, dunque, il momento d’inerzia richiesto:

(11)   \begin{equation*} I = \dfrac{md^2}{12}.  \end{equation*}


 
 

Esercizi di Meccanica classica

Se siete interessati ad approfondire argomenti inerenti alla Meccanica classica, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.


 
 

Esercizi di Meccanica razionale

Se siete interessati ad approfondire argomenti inerenti alla Meccanica razionale, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.

 
 

Risorse didattiche aggiuntive per approfondire la matematica

Leggi...

  • Math Stack Exchange – Parte della rete Stack Exchange, questo sito è un forum di domande e risposte specificamente dedicato alla matematica. È una delle piattaforme più popolari per discutere e risolvere problemi matematici di vario livello, dall’elementare all’avanzato.
  • Art of Problem Solving (AoPS) – Questo sito è molto noto tra gli studenti di matematica di livello avanzato e i partecipanti a competizioni matematiche. Offre forum, corsi online, e risorse educative su una vasta gamma di argomenti.
  • MathOverflow – Questo sito è destinato a matematici professionisti e ricercatori. È una piattaforma per domande di ricerca avanzata in matematica. È strettamente legato a Math Stack Exchange ma è orientato a un pubblico con una formazione più avanzata.
  • PlanetMath – Una comunità collaborativa di matematici che crea e cura articoli enciclopedici e altre risorse di matematica. È simile a Wikipedia, ma focalizzata esclusivamente sulla matematica.
  • Wolfram MathWorld – Una delle risorse online più complete per la matematica. Contiene migliaia di articoli su argomenti di matematica, creati e curati da esperti. Sebbene non sia un forum, è una risorsa eccellente per la teoria matematica.
  • The Math Forum – Un sito storico che offre un’ampia gamma di risorse, inclusi forum di discussione, articoli e risorse educative. Sebbene alcune parti del sito siano state integrate con altri servizi, come NCTM, rimane una risorsa preziosa per la comunità educativa.
  • Stack Overflow (sezione matematica) – Sebbene Stack Overflow sia principalmente noto per la programmazione, ci sono anche discussioni rilevanti di matematica applicata, specialmente nel contesto della scienza dei dati, statistica, e algoritmi.
  • Reddit (r/Math) – Un subreddit popolare dove si possono trovare discussioni su una vasta gamma di argomenti matematici. È meno formale rispetto ai siti di domande e risposte come Math Stack Exchange, ma ha una comunità attiva e molte discussioni interessanti.
  • Brilliant.org – Offre corsi interattivi e problemi di matematica e scienza. È particolarmente utile per chi vuole allenare le proprie capacità di problem solving in matematica.
  • Khan Academy – Una risorsa educativa globale con lezioni video, esercizi interattivi e articoli su una vasta gamma di argomenti di matematica, dalla scuola elementare all’università.






Document









Document



error: Il contenuto è protetto!!