Qui si risolve LOGO
a

Menu

M

Chiudi

Home » Esercizio lavoro ed energia 71

L’esercizio 71 sul lavoro e l’energia fa parte della raccolta inclusa nella cartella Dinamica del punto materiale: Lavoro ed energia in Meccanica classica. Questo esercizio segue Esercizio lavoro ed energia 70 ed è il precedente di un eventuale Esercizio lavoro ed energia 72. Questo esercizio è progettato per studenti che frequentano un corso di Fisica 1, indirizzato a chi studia ingegneria, fisica o matematica.

 

Testo lavoro ed energia 71

Esercizio 71  (\bigstar\bigstar\bigstar\largewhitestar\largewhitestar). Un punto materiale di massa incognita è sospeso tramite un filo verificale ed è collegato al suolo da una molla di costante elastica k. La molla è inizialmente a riposo. Sia T la tensione del filo. Calcolare

  • la massa del punto in funzione di T e g.

Ad un certo istante si taglia il filo, calcolare:

  • la massima distanza percorsa dal punto in funzione di T e k;
  • la posizione in cui la velocità è massima in funzione di T e k;
  • il valore massimo della sua velocità in funzione di T, k e g.

 

 

Rendered by QuickLaTeX.com

 

Figura 1: sistema fisico in esame.

 

Svolgimento Punto 1.

Il sistema fisico in esame è fatto in maniera tale che il corpo sia vincolato a muoversi verticalmente rispetto al suolo. Dunque, a tal proposito, è comodo scegliere un sistema di riferimento cartesiano fisso Oy con l’origine O in corrispondenza della posizione iniziale del corpo prima che il filo sia tagliato, ed orientato come in figura 2. Sul corpo agiscono la forza peso m\vec{g} e la tensione del filo \vec{T}, orientate come in figura 2. Osserviamo che, poiché nella configurazione d’equilibrio la molla è a riposo, essa non esercita nessuna forza sul corpo di massa m, di conseguenza per questo primo punto non ne teniamo conto.

 

 

Rendered by QuickLaTeX.com

 

Figura 2: diagramma di corpo libero.

Diagramma di corpo libero per un punto materiale sospeso a un filo, mostrando la tensione T e la forza peso mg.

 

  Per il secondo principio della dinamica per il corpo di massa m all’equilibrio, si ha

(1)   \begin{equation*} 	T-mg=0, 	\end{equation*}

da cui otteniamo che la massa del corpo è data da

    \[\boxcolorato{fisica}{m=\dfrac{T}{g}.}\]


Svolgimento Punto 2.

Per calcolare la massima distanza percorsa dal corpo di massa m possiamo sfruttare il teorema delle forze vive. Esso asserisce che il lavoro totale L compiuto dal risultante delle forze sul corpo m per portare quest’ultimo da una configurazione iniziale ad una configurazione finale, è pari alla variazione di energia cinetica \Delta K del corpo durante tale intervallo temporale, ossia

(2)   \begin{equation*} 	L=\Delta K=\dfrac{1}{2}mv_f^2-\dfrac{1}{2}mv_i^2, 	\end{equation*}

dove abbiamo indicato con v_i e v_f la velocità iniziale e finale del corpo rispettivamente. Nel momento in cui viene tagliato il filo, sul corpo m agiscono la forza peso m\vec{g} e la forza elastica \vec{f}_{\text{el}}, per cui il lavoro totale L è dato da

(3)   \begin{equation*} 	L=L_{\text{peso}}+L_{\text{el}}, 	\end{equation*}

dove L_{\text{peso}} e L_{\text{el}} rappresentano il lavoro compiuto dalla forza peso e dalla forza elastica rispettivamente. Dalle equazioni (2) e (3), ricaviamo che in generale vale

(4)   \begin{equation*} 	L_{\text{peso}}+L_{\text{el}}=\dfrac{1}{2}mv_f^2-\dfrac{1}{2}mv_i^2. 	\end{equation*}

Consideriamo come configurazione iniziale quella in cui il corpo m parte da fermo v_i=0 in corrispondenza dell’origine del riferimento Oy precedentemente definito con la molla a riposo, come illustrato in figura 3. Inoltre, scegliamo la quota dell’origine O come lo zero dell’energia potenziale gravitazionale. Consideriamo, invece, come configurazione finale quella in cui il corpo m, una volta che il filo è stato tagliato, scende al di sotto dell’origine O di una quantità y_{\max} alla quale si arresta (ossia v_f=0), come illustrato in figura 3.  

 

Rendered by QuickLaTeX.com

 

Figura 3: sistema nella configurazione iniziale (sinistra) e nella configurazione finale (destra).

Diagramma di corpo libero che mostra il punto materiale dopo che il filo è stato tagliato, con la forza peso mg e la forza elastica Fel della molla.

 

  In riferimento alle configurazioni iniziali e finali scelte, osserviamo che

(5)   \begin{equation*} 	\begin{cases} 	v_i=0\\[10pt] 	v_f=0\\[10pt] 	L_{\text{peso}}=mgh_i-mgh_f=-mgy_{\max}\\[10pt] 	L_{\text{el}}=-\dfrac{1}{2}ky_{max}^2, 	\end{cases} 	\end{equation*}

dove h_i=0 ed h_f=y_{\max} rappresentano la posizione del corpo rispetto all’origine del riferimento Oy rispettivamente nella configurazione iniziale e finale. Inserendo i valori del sistema (5) nell’equazione (4), otteniamo

(6)   \begin{equation*} 	-mgy_{\max}-\dfrac{1}{2}ky_{\max}^2=0\quad\Leftrightarrow\quad -y_{max}\left(mg+\dfrac{1}{2}ky_{\max}\right)=0. 	\end{equation*}

L’equazione (6) ammette due soluzioni, ossia

(7)   \begin{equation*} 	y_{\max,1}=0\quad\quad\vee\quad\quad y_{\max,2}=-\dfrac{2mg}{k}. 	\end{equation*}

Osserviamo che dalle soluzioni appena ottenute possiamo dedurre che il corpo si muove di moto armonico tra y=y_{\max,1} e y=y_{\max,2}, punti nei quali la velocità si annulla. Quindi la massima distanza d_{\text{max}} percorsa dal punto è pari a

(8)   \begin{equation*} 	d_{\text{max}}=\left \vert y_{\max,2}\right \vert =\dfrac{2mg}{k}, 	\end{equation*}

da cui, sostituendo il valore di m ottenuto al punto 1 nella precedente equazione, otteniamo che

    \[\boxcolorato{fisica}{d_{\text{max}}=\dfrac{2T}{k}.}\]


Svolgimento Punto 3.

Nel momento in cui il filo viene tagliato, il corpo di massa m cade verso il basso sotto l’effetto della sua forza peso causando una compressione della molla. La quale a sua volta eserciterà su di esso una forza elastica. Rispetto al sistema di riferimento Oy precedentemente definito, supponiamo che il corpo di massa m sia sceso rispetto all’origine O di una quantità y (ossia y<0), come illustrato in figura 4. Sul corpo di massa m agiscono la sua forza peso m\vec{g} e la forza elastica \vec{f}_{\text{el}}, orientate come in figura 4.  

 

Rendered by QuickLaTeX.com

 

Figura 4: diagramma di corpo libero.

Diagramma di corpo libero che mostra il punto materiale dopo che il filo è stato tagliato, con la forza peso mg e la forza elastica Fel della molla.

 

  Per il secondo principio della dinamica per il corpo di massa m, si ha

(9)   \begin{equation*} 	f_{\text{el}}-mg=m\ddot{y}\quad\Leftrightarrow\quad -ky-mg=m\ddot{y}, 	\end{equation*}

ossia

(10)   \begin{equation*} 	\ddot{y}=-\dfrac{k}{m}y-g. 	\end{equation*}

La posizione y=\tilde{y} in cui il corpo raggiunge la massima velocità è tale per cui esso ha accelerazione nulla\footnote{Si ricordi che in un moto armonico la velocità massima si raggiunge quando l’accelerazione è nulla.}, per cui dalla condizione

(11)   \begin{equation*} 	\ddot{y}=0, 	\end{equation*}

usando l’equazione (10), otteniamo che

(12)   \begin{equation*} 	-\dfrac{k}{m}\tilde{y}-g=0, 	\end{equation*}

da cui segue che la posizione in corrispondenza della velocità massima raggiunta dal corpo è pari a

(13)   \begin{equation*} 	\tilde{y}=-\dfrac{mg}{k}. 	\end{equation*}

Sostituendo il valore di m ottenuto nel punto 1 la precedente equazione diventa

    \[\boxcolorato{fisica}{	\tilde{y}=-\dfrac{T}{k}.}\]


Svolgimento Punto 4.

Per calcolare la massima velocità v_{\max} raggiunta dal corpo utilizziamo lo stesso procedimento visto nel punto 2 con l’unica differenza che la configurazione finale adesso è quella per cui il corpo si trova ad una posizione y=\tilde{y} con una velocità v=v_{\max} che è la nostra incognita, come illustrato in figura 5.  

 

Rendered by QuickLaTeX.com

 

Figura 5: sistema nella configurazione iniziale (sinistra) e nella configurazione finale (destra).

Illustrazione del sistema nella configurazione iniziale e finale, mostrando la compressione della molla e la velocità massima raggiunta dal punto materiale.

 

  Analogamente a quanto fatto nel punto 2, in riferimento alle succitate configurazioni iniziali e finali, osserviamo che

(14)   \begin{equation*} 	\begin{cases} 	v_i=0\\[10pt] 	v_f=v_{\max}\\[10pt] 	L_{\text{peso}}=mgh_i-mgh_f=-mg\tilde{y}\\[10pt] 	L_{\text{el}}=-\dfrac{1}{2}k\tilde{y}^2, 	\end{cases} 	\end{equation*}

dove h_i=0 ed h_f=\tilde{y} rappresentano la posizione del corpo rispetto all’origine del riferimento Oy rispettivamente nella configurazione iniziale e finale. Inserendo i valori del sistema (14) nell’equazione (4), otteniamo

(15)   \begin{equation*} 	-mg\tilde{y}-\dfrac{1}{2}k\tilde{y}^2=\dfrac{1}{2}mv_{\max}^2\quad\Leftrightarrow\quad v_{max}=\left(\tilde{y}\left(-2g-\dfrac{k}{m}\tilde{y}\right)\right)^{1/2}\quad\Leftrightarrow\quad v_{\max}=\left(-\tilde{y}\left(2g+\dfrac{k}{m}\tilde{y}\right)\right)^{1/2} 	\end{equation*}

conseguentemente sostituendo l’espressione di m e \tilde{y} calcolate rispettivamente al primo punto del problema e al terzo punto del problema nella precedente equazione, segue che

(16)   \begin{equation*} 	v_{\max}=\left(\dfrac{T}{k}\left(2g+k\,\dfrac{g}{T}\left(-\dfrac{T}{k}\right)\right)\right)^{1/2}, 	\end{equation*}

ossia

    \[\boxcolorato{fisica}{v_{\max}=\sqrt{\dfrac{Tg}{k}}.}\]

 

Scarica gli esercizi svolti

Ottieni il documento contenente 82 esercizi risolti, contenuti in 255 pagine ricche di dettagli, per migliorare la tua comprensione del lavoro ed energia in meccanica classica.

 
 

Esercizi di Meccanica classica

Se siete interessati ad approfondire argomenti inerenti alla Meccanica Classica, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.


 
 

Tutti gli esercizi di elettromagnetismo

Se si desidera proseguire con gli esercizi, di seguito è disponibile una vasta raccolta che copre interamente gli argomenti del programma di

  • Elettromagnetismo. Questa raccolta include spiegazioni dettagliate e gli esercizi sono organizzati in base al livello di difficoltà, offrendo un supporto completo per lo studio e la pratica.

     
     

    Esercizi di Meccanica classica

    Se siete interessati ad approfondire argomenti inerenti alla Meccanica Classica, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.


     
     

    Tutti gli esercizi di elettromagnetismo

    Se si desidera proseguire con gli esercizi, di seguito è disponibile una vasta raccolta che copre interamente gli argomenti del programma di

  • Elettromagnetismo. Questa raccolta include spiegazioni dettagliate e gli esercizi sono organizzati in base al livello di difficoltà, offrendo un supporto completo per lo studio e la pratica.

     
     

    Esercizi di Meccanica razionale

    Se siete interessati ad approfondire argomenti inerenti alla Meccanica razionale, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.


     
     

    Ulteriori risorse didattiche per la fisica

    Leggi...

    • Physics Stack Exchange – Parte della rete Stack Exchange, questo sito è un forum di domande e risposte specificamente dedicato alla fisica. È un’ottima risorsa per discutere e risolvere problemi di fisica a tutti i livelli, dall’elementare all’avanzato.
    • ArXiv – ArXiv è un archivio di preprint per articoli di ricerca in fisica (e in altre discipline scientifiche). Gli articoli non sono peer-reviewed al momento della pubblicazione su ArXiv, ma rappresentano un’importante risorsa per rimanere aggiornati sugli sviluppi più recenti nella ricerca fisica.
    • Phys.org – Questo sito offre notizie e aggiornamenti su una vasta gamma di argomenti scientifici, con un focus particolare sulla fisica. È una risorsa utile per rimanere aggiornati sugli ultimi sviluppi nella ricerca e nelle scoperte fisiche.
    • Physics Forums – Una delle comunità online più grandi per la fisica e la scienza in generale. Offre discussioni su vari argomenti di fisica, aiuto con i compiti, e discussioni su articoli di ricerca.
    • The Feynman Lectures on Physics – Questo sito offre accesso gratuito alla famosa serie di lezioni di fisica di Richard Feynman, un’ottima risorsa per studenti di fisica di tutti i livelli.
    • American Physical Society (APS) – La APS è una delle organizzazioni più importanti per i fisici. Il sito offre accesso a pubblicazioni, conferenze, risorse educative e aggiornamenti sulle novità del mondo della fisica.
    • Institute of Physics (IOP) – L’IOP è un’importante organizzazione professionale per i fisici. Il sito offre risorse per l’apprendimento, accesso a riviste scientifiche, notizie e informazioni su eventi e conferenze nel mondo della fisica.
    • Physics World – Physics World è una rivista online che offre notizie, articoli, interviste e approfondimenti su vari argomenti di fisica. È una risorsa preziosa per chiunque sia interessato agli sviluppi contemporanei nella fisica.
    • Quanta Magazine (sezione Fisica) – Quanta Magazine è una pubblicazione online che copre notizie e articoli di approfondimento su matematica e scienze. La sezione fisica è particolarmente interessante per i contenuti di alta qualità e le spiegazioni approfondite.
    • Perimeter Institute – Il Perimeter Institute è un importante centro di ricerca in fisica teorica. Il sito offre accesso a conferenze, workshop e materiale educativo, ed è un’ottima risorsa per chi è interessato alla fisica teorica avanzata.

     
     

    Lavoro ed energia nelle energie rinnovabili: fondamenti per un futuro sostenibile

    Leggi...

    L’energia è un concetto fondamentale che pervade tutti gli aspetti della vita moderna, dall’alimentazione delle abitazioni e delle industrie, alla mobilità e alla comunicazione globale. Con l’emergere delle preoccupazioni legate al cambiamento climatico e all’esaurimento delle risorse fossili, le energie rinnovabili sono diventate un tema centrale nella ricerca di soluzioni sostenibili per il futuro energetico del pianeta. Questo articolo esplora i concetti di lavoro ed energia nell’ambito delle energie rinnovabili, evidenziando il loro ruolo cruciale nella transizione verso una produzione energetica più pulita e sostenibile.

    Il concetto di lavoro in fisica si riferisce al trasferimento di energia attraverso l’applicazione di una forza su un corpo che si muove nella direzione della forza stessa. In termini di energia rinnovabile, il lavoro viene svolto ogni volta che una fonte naturale di energia, come il vento, il sole, o l’acqua, viene convertita in una forma di energia utilizzabile, come l’elettricità. Ad esempio, nelle turbine eoliche, il lavoro è compiuto dal vento che esercita una forza sulle pale, facendole ruotare. Questa rotazione viene convertita in energia elettrica attraverso un generatore. Il vento compie lavoro sulle pale, trasferendo loro l’energia cinetica necessaria per generare elettricità. Nei pannelli fotovoltaici, i fotoni provenienti dal sole “spingono” gli elettroni attraverso un semiconduttore, generando corrente elettrica. Anche se il concetto di lavoro qui è meno intuitivo rispetto all’eolico, l’energia solare svolge un lavoro fondamentale nel liberare gli elettroni necessari per produrre energia. Nelle centrali idroelettriche, l’acqua che cade da un’altezza compie lavoro sulle turbine situate alla base delle dighe. Questo lavoro, dovuto all’energia potenziale dell’acqua, viene trasformato in energia cinetica e infine in energia elettrica.

    L’energia è la capacità di un sistema di compiere lavoro. Nelle energie rinnovabili, la sfida principale è catturare e convertire l’energia disponibile nell’ambiente in una forma utilizzabile. Le principali forme di energia coinvolte nelle tecnologie rinnovabili includono l’energia cinetica, come quella del vento e dell’acqua in movimento, che può essere convertita direttamente in energia elettrica, l’energia solare, che può essere convertita in energia elettrica attraverso pannelli fotovoltaici o utilizzata per riscaldare fluidi in impianti solari termici, e l’energia potenziale, come l’energia immagazzinata nell’acqua dietro una diga, che può essere rilasciata per generare energia elettrica.

    Uno degli obiettivi principali nello sviluppo delle tecnologie rinnovabili è migliorare l’efficienza con cui queste tecnologie convertono l’energia disponibile in energia utilizzabile. L’efficienza è spesso definita come il rapporto tra l’energia prodotta e l’energia disponibile, e può essere limitata da vari fattori, tra cui le perdite energetiche sotto forma di calore e l’inefficienza dei componenti meccanici ed elettrici. La sostenibilità delle energie rinnovabili non dipende solo dall’efficienza, ma anche dalla capacità di queste tecnologie di ridurre l’impatto ambientale rispetto alle fonti fossili. A differenza del carbone, del petrolio e del gas naturale, le fonti rinnovabili non emettono direttamente gas serra durante la produzione di energia e possono essere sfruttate in modo continuo senza esaurirsi nel tempo.

    Mentre il mondo si sposta verso un futuro più sostenibile, l’importanza delle energie rinnovabili continuerà a crescere. Gli sviluppi tecnologici stanno rendendo queste fonti di energia sempre più competitive rispetto alle fonti tradizionali, riducendo i costi e migliorando l’affidabilità. Con il continuo progresso nella scienza dei materiali e nelle tecnologie di stoccaggio dell’energia, le energie rinnovabili sono destinate a svolgere un ruolo centrale nel soddisfare le esigenze energetiche globali, contribuendo al contempo a mitigare il cambiamento climatico. In conclusione, il concetto di lavoro ed energia è intrinsecamente legato alle energie rinnovabili, fornendo una base per comprendere come queste tecnologie catturano e trasformano le risorse naturali in energia utilizzabile. Con l’aumento della consapevolezza ambientale e la pressione per ridurre le emissioni di carbonio, le energie rinnovabili rappresentano non solo una soluzione necessaria, ma anche una strada percorribile verso un futuro energetico sostenibile.


     

    Lavoro ed energia: l’evoluzione storica e scientifica di due concetti fondamentali della fisica

    Leggi...

    Il concetto di lavoro ed energia ha radici profonde nella storia della fisica e della filosofia naturale, evolvendosi attraverso secoli di osservazioni e teorie che hanno cercato di spiegare il funzionamento del mondo naturale. Il concetto di lavoro in fisica, come misura del trasferimento di energia attraverso l’applicazione di una forza, è relativamente recente nella storia della scienza, risalente al XVIII secolo. Prima di questo periodo, i filosofi naturali, come Aristotele, avevano concetti più rudimentali di movimento e forza, senza una chiara distinzione tra energia e lavoro. Il termine “lavoro” in senso fisico fu formalmente introdotto dal matematico francese Gaspard-Gustave Coriolis nel 1829. Coriolis definì il lavoro come il prodotto della forza applicata su un corpo e dello spostamento del corpo nella direzione della forza. Questa definizione permise di quantificare il lavoro meccanico e divenne un concetto fondamentale nella meccanica classica.

    Il concetto di energia ha una storia più lunga e complessa. L’idea che il movimento e le forze potessero essere legate a una sorta di “capacità di compiere lavoro” risale all’antichità, ma il concetto moderno di energia iniziò a prendere forma solo nel XVII secolo. Un passo importante fu fatto con i lavori di Gottfried Wilhelm Leibniz e Émilie du Châtelet nel XVII e XVIII secolo. Leibniz sviluppò il concetto di vis viva (forza viva), che corrisponde all’energia cinetica moderna, come il prodotto della massa di un corpo e del quadrato della sua velocità. Questo concetto fu ulteriormente sviluppato da Émilie du Châtelet, che chiarì il ruolo dell’energia potenziale, contribuendo a formare la base del principio di conservazione dell’energia.

    Nel XIX secolo, scienziati come Joule, Helmholtz, e Thomson (Lord Kelvin) consolidarono il concetto di energia come quantità fisica conservata. Joule, in particolare, dimostrò l’equivalenza tra lavoro meccanico e calore, stabilendo il principio di conservazione dell’energia, noto come la prima legge della termodinamica.

    La formalizzazione del lavoro e dell’energia come concetti interconnessi permise agli scienziati di sviluppare una comprensione più profonda dei processi fisici. In meccanica classica, il lavoro svolto su un sistema è strettamente legato alle variazioni di energia del sistema, e questa comprensione è alla base di molte applicazioni in ingegneria e fisica. Nel tempo, questi concetti sono diventati fondamentali non solo nella meccanica, ma anche in altre branche della fisica, come la termodinamica e l’elettromagnetismo, fornendo un linguaggio comune per descrivere e analizzare un’ampia gamma di fenomeni naturali.






    Document