Qui si risolve LOGO
a

Menu

M

Chiudi

Esercizio corpo rigido 19

Dinamica del corpo rigido

Home » Esercizio corpo rigido 19

L’Esercizio Corpo Rigido 19 è il diciannovesimo nella serie dedicata agli esercizi sul corpo rigido. Segue l’Esercizio Corpo Rigido 18 e precede l’Esercizio Corpo Rigido 20. È rivolto a studenti di Fisica 1, in particolare a coloro che studiano ingegneria, fisica o matematica.

Nel percorso didattico di Fisica 1, prima di affrontare i corpi rigidi, si studiano gli esercizi sui sistemi di punti materiali. Successivamente, si passa agli esercizi sugli urti tra punti materiali e corpi rigidi, che rappresentano un momento di sintesi nel percorso formativo.

 

Testo esercizio corpo rigido 19

 

Esercizio 19  (\bigstar \bigstar\largewhitestar\largewhitestar\largewhitestar). Sia un’asta rigida di lunghezza \ell e un sistema di riferimento fisso Oxy come in figura. L’asta ha gli estremi vincolati a scorrere lungo l’asse x e lungo l’asse y. Dimostrare che il centro dell’asta descrive una circonferenza di raggio \ell/2 con la stessa velocità angolare dell’asta.
Nota. Assumere trascurabili tutti gli attriti e in figura \theta è l’angolo che forza l’asta con l’asse y e C sono le coordiante del centro di massa rispetto al sistema di riferimento 0xy e che all’iniziale è tutto in quiete .

 

Rendered by QuickLaTeX.com

Svolgimento.

All’istante iniziale è tutto in quiete e osserviamo che l’asta è soggetta alla forza peso m\vec{g}, che la farà muovere, inoltre l’asta è soggetta alle forse esterne \vec{N}_1 e \vec{N}_2 che sono le reazioni vincolari generate dal contatto tra l’asta e i piani di appoggio orizzontale e verticale (vedi figura 1).

 

Rendered by QuickLaTeX.com

 

Parametrizziamo la posizione del centro di massa applicando le coordinate polari (vedi figura 2):

Rendered by QuickLaTeX.com

 

(1)   \begin{equation*} \overline{\gamma}(\theta) = \dfrac{\ell}{2} \cos \theta \, \hat{x} + \dfrac{\ell}{2} \, \sin \theta \, \hat{y}, \qquad \mbox{con } \theta \in \left(0,\dfrac{\pi}{2}\right) \end{equation*}

Osserviamo che

    \[\begin{cases} x = \dfrac{\ell}{2} \cos \theta \\ \\ y = \dfrac{\ell}{2} \sin \theta \end{cases}\]

soddisfa

    \[x^2+y^2=R^2 \Leftrightarrow \dfrac{\ell^2}{4} (\cos^2 \theta- \sin^2\theta) = R^2 \Leftrightarrow \dfrac{\ell^2}{2} = R^2 \Leftrightarrow R = \dfrac{\ell}{2}\]

che è proprio l’equazione di una circonferenza centrata nell’orgine (0,0) di raggio R=\dfrac{\ell}{2} (vedi figura 3).

Il seguente grafico evidenzia il risultato ottenuto

Rendered by QuickLaTeX.com

Il centro di massa come detto si muove di moto circolare, quindi possiamo scrivere:

    \[v_{CM} = \omega\dfrac{\ell}{2}\]

dove \omega è la velocità angolare con il quale si muove il centro di massa. Deriviamo (1)

(2)   \begin{equation*} \dfrac{d\overline{\gamma}}{dt} (t) = \vec{v}(t) = -\dfrac{\ell}{2} \sin \theta \; \dot{\theta} \; \hat{x} + \dfrac{\ell}{2} \cos \theta \; \dot{\theta} \; \hat{y} \end{equation*}

Calcoliamo il modulo di \vec{v}(t)

    \[\vert \vec{v}(t) \vert = v(t) = \sqrt{\dfrac{\ell^2}{4} \cos^2 \theta \; \dot{\theta}^2 + \dfrac{\ell^2}{4} \sin^2 \theta\; \dot{\theta}^2} = \dfrac{\ell}{2} \, \dot{\theta}\]

dove \omega=\dot{\theta} che è proprio la velocità angolare dell’asta.

 

Fonte.

P.Mazzoldi, M.Nigro, C.Voci – Fisica, Edises (1992).

 

Scarica gli esercizi svolti

Ottieni il documento contenente 69 esercizi risolti, contenuti in 242 pagine ricche di dettagli, per migliorare la tua comprensione della dinamica del corpo rigido.

 
 

Esercizi di Meccanica classica

Se siete interessati ad approfondire argomenti inerenti alla Meccanica Classica, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.


 
 

Tutti gli esercizi di elettromagnetismo

Se si desidera proseguire con gli esercizi, di seguito è disponibile una vasta raccolta che copre interamente gli argomenti del programma di

  • Elettromagnetismo. Questa raccolta include spiegazioni dettagliate e gli esercizi sono organizzati in base al livello di difficoltà, offrendo un supporto completo per lo studio e la pratica.

     
     

    Esercizi di Meccanica razionale

    Se siete interessati ad approfondire argomenti inerenti alla Meccanica razionale, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.


     
     

    Ulteriori risorse didattiche per la fisica

    Leggi...

    • Physics Stack Exchange – Parte della rete Stack Exchange, questo sito è un forum di domande e risposte specificamente dedicato alla fisica. È un’ottima risorsa per discutere e risolvere problemi di fisica a tutti i livelli, dall’elementare all’avanzato.
    • ArXiv – ArXiv è un archivio di preprint per articoli di ricerca in fisica (e in altre discipline scientifiche). Gli articoli non sono peer-reviewed al momento della pubblicazione su ArXiv, ma rappresentano un’importante risorsa per rimanere aggiornati sugli sviluppi più recenti nella ricerca fisica.
    • Phys.org – Questo sito offre notizie e aggiornamenti su una vasta gamma di argomenti scientifici, con un focus particolare sulla fisica. È una risorsa utile per rimanere aggiornati sugli ultimi sviluppi nella ricerca e nelle scoperte fisiche.
    • Physics Forums – Una delle comunità online più grandi per la fisica e la scienza in generale. Offre discussioni su vari argomenti di fisica, aiuto con i compiti, e discussioni su articoli di ricerca.
    • The Feynman Lectures on Physics – Questo sito offre accesso gratuito alla famosa serie di lezioni di fisica di Richard Feynman, un’ottima risorsa per studenti di fisica di tutti i livelli.
    • American Physical Society (APS) – La APS è una delle organizzazioni più importanti per i fisici. Il sito offre accesso a pubblicazioni, conferenze, risorse educative e aggiornamenti sulle novità del mondo della fisica.
    • Institute of Physics (IOP) – L’IOP è un’importante organizzazione professionale per i fisici. Il sito offre risorse per l’apprendimento, accesso a riviste scientifiche, notizie e informazioni su eventi e conferenze nel mondo della fisica.
    • Physics World – Physics World è una rivista online che offre notizie, articoli, interviste e approfondimenti su vari argomenti di fisica. È una risorsa preziosa per chiunque sia interessato agli sviluppi contemporanei nella fisica.
    • Quanta Magazine (sezione Fisica) – Quanta Magazine è una pubblicazione online che copre notizie e articoli di approfondimento su matematica e scienze. La sezione fisica è particolarmente interessante per i contenuti di alta qualità e le spiegazioni approfondite.
    • Perimeter Institute – Il Perimeter Institute è un importante centro di ricerca in fisica teorica. Il sito offre accesso a conferenze, workshop e materiale educativo, ed è un’ottima risorsa per chi è interessato alla fisica teorica avanzata.

     
     






    Document