Frazioni algebriche – Esercizio 49

Frazioni algebriche

Home » Frazioni algebriche – Esercizio 49

More results...

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
post
page

Esercizio.  (\bigstar\bigstar\bigstar)

Semplificare la seguente espressione assumendo che siano verificate le condizioni di esistenza:

    \[\left\{ \left[\left(1-\dfrac{1}{x}\right):\left(1-\dfrac{1}{x^2}\right)\right]^2-\dfrac{x^2}{x^2+2x+1}\right\}:\dfrac{1}{x^2-1}\]

 

Soluzione. 
Sfruttando

    \[A^2-B^2 = (A-B)(A+B)\]

e

    \[A^2+2AB+B^2=(A+B)^2\]

possiamo scrivere

    \[\begin{aligned} & \left\{ \left[\left(1-\dfrac{1}{x}\right):\left(1-\dfrac{1}{x^2}\right)\right]^2-\dfrac{x^2}{x^2+2x+1}\right\}:\dfrac{1}{x^2-1} =\\\\ & = \left\{ \left[\left(\dfrac{x-1}{x}\right):\left(\dfrac{(x-1)(x+1)}{x^2}\right)\right]^2-\dfrac{x^2}{(x+1)^2}\right\}:\dfrac{1}{(x-1)(x+1)} =\\\\ & = \left\{ \dfrac{x^2}{(x+1)^2} -\dfrac{x^2}{(x+1)^2}\right\}:\dfrac{1}{(x-1)(x+1)} =\\\\ & = 0:\dfrac{1}{(x-1)(x+1)} =\\\\ & = 0 \end{aligned}\]

 


Fonte: Moduli di lineamenti di matematica N.Dodero – P.Baroncini – R.Manfredi