Esercizio sul centro di massa – 2
In questo secondo articolo della raccolta di esercizi sul centro di massa presentiamo il calcolo del centro di massa di un semicerchio. Segnaliamo anche il precedente esercizio sul centro di massa – 1 e il successivo esercizio sul centro di massa – 3 per ulteriore materiale sul medesimo argomento.
Testo dell’esercizio
Richiami teorici.
(1)
per un corpo solido descritto come un dominio avente densità volumica , le coordinate del centro di massa si ottengono con le versioni integrali di tali relazioni:
(2)
(3)
(4)
dove con si è indicata la massa totale del corpo . Nel caso in cui il corpo è supposto omogeneo, ossia in cui è una funzione costante, essa si semplifica dal calcolo e le formule risultanti coinvolgono soltanto le proprietà geometriche di , senza alcun riferimento alla sua massa. Chiaramente, a volte il corpo in esame possiede delle proprietà geometriche particolari, ad esempio può essere costituito da una lastra piana sottile o da un’asta sottile, riducendo il calcolo delle coordinate del centro di massa alla risoluzioni rispettivamente di integrali doppi o di superficie, oppure integrali semplici o di linea.
Possiamo ora presentare la soluzione dell’esercizio.
Svolgimento.
Figura 2: rappresentazione della lamina di forma semicircolare; indicheremo con l’angolo convesso formato dal vettore posizione e dal semiasse positivo delle ascisse.
Fissiamo un sistema di riferimento fisso come in figura 2, in modo da far coincidere l’origine del sistema con il centro della semicirconferenza. Possiamo scrivere in coordinate polari le coordinate di un generico punto appartenente alla lamina come segue:
Ricordiamo inoltre che, nel passaggio alle coordinate polari, la superficie infinitesima si trasforma come segue:
(5)
Il centro di massa sarà dunque dato dal seguente integrale doppio esteso all’intera superficie
(6)
dove si è identificata con la densità superficiale della lamina, e con la superficie infinitesima; essendo costante, si è scelto di semplificare quest’ultima nell’ultimo passaggio. Segue, passando alle coordinate polari e usando l’equazione (5),
(7)
dove e sono i versori relativi agli assi. Effettuando l’integrazione rispetto alla coordinata radiale si ottiene
(8)
da cui segue, integrando rispetto a ,
(9)
Il centro di massa avrà dunque coordinate:
(10)
in cui, come nell’esercizio precedente, la componente è nulla per la simmetria del problema.
Esercizi di Meccanica classica
Se siete interessati ad approfondire argomenti inerenti alla Meccanica classica, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.
Leggi..
- Cinematica del punto materiale.
- Dinamica del punto materiale: le leggi di Newton nella meccanica classica.
- Dinamica del punto materiale: lavoro ed energia.
- Moti relativi.
- Sistemi di punti materiali.
- Dinamica del corpo rigido.
- Urti .
- Gravitazione .
- Oscillazioni e onde.
- Meccanica dei fluidi.
- Onde meccaniche.
- Statica in meccanica classica.
- Fondamenti di relatività ristretta: trasformazioni di Lorentz e principali conseguenze.
- Calcolo del centro di massa e dei momenti d’inerzia.
Esercizi di Meccanica razionale
Se siete interessati ad approfondire argomenti inerenti alla Meccanica razionale, di seguito troverete tutte le cartelle relative presenti sul sito Qui Si Risolve. Ciascuna cartella contiene numerosi esercizi con spiegazioni dettagliate, progettate per offrire una preparazione solida e una conoscenza approfondita della materia.
Leggi...
Risorse didattiche aggiuntive per approfondire la matematica
Leggi...
- Math Stack Exchange – Parte della rete Stack Exchange, questo sito è un forum di domande e risposte specificamente dedicato alla matematica. È una delle piattaforme più popolari per discutere e risolvere problemi matematici di vario livello, dall’elementare all’avanzato.
- Art of Problem Solving (AoPS) – Questo sito è molto noto tra gli studenti di matematica di livello avanzato e i partecipanti a competizioni matematiche. Offre forum, corsi online, e risorse educative su una vasta gamma di argomenti.
- MathOverflow – Questo sito è destinato a matematici professionisti e ricercatori. È una piattaforma per domande di ricerca avanzata in matematica. È strettamente legato a Math Stack Exchange ma è orientato a un pubblico con una formazione più avanzata.
- PlanetMath – Una comunità collaborativa di matematici che crea e cura articoli enciclopedici e altre risorse di matematica. È simile a Wikipedia, ma focalizzata esclusivamente sulla matematica.
- Wolfram MathWorld – Una delle risorse online più complete per la matematica. Contiene migliaia di articoli su argomenti di matematica, creati e curati da esperti. Sebbene non sia un forum, è una risorsa eccellente per la teoria matematica.
- The Math Forum – Un sito storico che offre un’ampia gamma di risorse, inclusi forum di discussione, articoli e risorse educative. Sebbene alcune parti del sito siano state integrate con altri servizi, come NCTM, rimane una risorsa preziosa per la comunità educativa.
- Stack Overflow (sezione matematica) – Sebbene Stack Overflow sia principalmente noto per la programmazione, ci sono anche discussioni rilevanti di matematica applicata, specialmente nel contesto della scienza dei dati, statistica, e algoritmi.
- Reddit (r/Math) – Un subreddit popolare dove si possono trovare discussioni su una vasta gamma di argomenti matematici. È meno formale rispetto ai siti di domande e risposte come Math Stack Exchange, ma ha una comunità attiva e molte discussioni interessanti.
- Brilliant.org – Offre corsi interattivi e problemi di matematica e scienza. È particolarmente utile per chi vuole allenare le proprie capacità di problem solving in matematica.
- Khan Academy – Una risorsa educativa globale con lezioni video, esercizi interattivi e articoli su una vasta gamma di argomenti di matematica, dalla scuola elementare all’università.